Experience with dynamic resource provisioning of the CMS online cluster using a cloud overlay

Diego da Silva Gomes - CERN
diego@cern.ch

on behalf of the CMS Data Acquisition Group
The CMS Online Cluster

The HLT cluster capacity:

- ~1500 nodes (prod + old)
- ~850k HEP-SPEC06
- ~37k cores (74k with hyper-threading)
- 160Gbps connectivity to CERN main facility

The idea: repurpose this computing resource for Grid processing when there is no data taking!

I.e. during periods of LHC Technical Stops, Machine Development weeks but also during inter-fills of physics
Major requirements

- **Isolation**: should not interfere/impact with Data Taking
- **Fast turnaround**: inter-fills as short as a couple of hours
- **Job resuming**: ability to pause grid jobs and resume them hours later
The Online Cloud overlay

Openstack to manage Virtual Machines running Grid-enabled software

VLAN on top of the DAQ Data network to deal with the network segmentation and isolation

Cloud daemons monitor LHC/Beam and DAQ status and switches nodes to/from cloud accordingly
The Online Cloud overlay

Switching HLT nodes from DAQ to cloud mode

1. cloud running condition detected
2. switch nodes to cloud mode
3. start Openstack services

- Switching nodes back to DAQ: essentially the same but in the reverse direction
- Up ~20 min to switch mode on all machines
Cloud Operation modes

- **Inter-fill**: follow LHC and Beam states and run the cloud during inter-fills and during LHC maintenance periods — *most common operation mode*

- **Fill**: follows beam states and progressively ramps up the cloud when DAQ conditions allow

- **Fill + Inter-fill**

- **On/off**: regardless of any condition
Monitoring

- **Icinga** for host and service checks
- **SMS** alerts to on call phone
- **Graphite**: for collecting cloud specific metrics
- **Grafana**: for aggregation, correlation and displaying
- **Scripts**: consistency checks, auto-killing protections
The HLT Cloud Contribution: 2017

Up to ~40k vcores

HLT cloud

10 million successful jobs!
Contribution in 2018

1st Jan to 22 Jun 2018

63k vcores

HLT cloud

6.54 million

Completed Jobs per site
Known difficulties from experience

- **Catching up with DAQ changes** — the cloud overlay must be provided on top of what’s in use for CMS-DAQ as Operating System Software, Networking and Computing Hardware

- **Making efficient use of resources** — to achieve, we must follow closely the LHC and CMS schedules and plans to set the appropriate cloud operation mode

 - Also, some conditions are hard to anticipate and thus not reacting accordingly may result in massive job failures or waste of resources

- **Troubleshooting job failures** — current monitoring tools help a lot spotting known issues, but unknown issues require log/state analysis.

 - However, cloud VMs available only for a few hours (i.e. during inter-fills) or get vanished due to protections kicking in upon issues.
What’s next…

• Exploit more running cloud **during fills** - feature made available late in 2017

• Use of Singularity for containerisation under way — will allow the cloud to match both CC7/SLC6 job workflows

• Update to the latest Openstack release: need to work out best time to do this according to need for the cloud resources

• Monitoring: Elasticsearch/Logstash/Kibana for log analysis and job troubleshooting
Thank you!