

COMPASS Grid Production System

Artem Petrosyan, JINR CHEP 2018, Sofia, Bulgaria

COMPASS collaboration

Common Muon and Proton Apparatus for Structure and Spectroscopy

24 institutions from 13 countries

nearly 250 physicists

- CERN SPS north area
- Fixed target experiment
- Approved in 1997 (20 years)
- Taking data since 2002

- Data taking 2002-2011
- Muon and hadron beams
- Nucleon spin structure
- Spectroscopy

COMPASS-II

- Data taking 2012-2018 (2021?)
- Primakoff
- DVCS (GPD+SIDIS)
- Polarized Drell-Yan
- Transverse deuteron SIDIS

Many "beyond 2021" ideas

COMPASS web page: http://www.compass.cern.ch

COMPASS experimental setup: Phase I (muon program)

Muon-filter

SciFi, Silicon, MicroMegas, GEM,

MWPC, DC, Straw, Muon wall

Large Angle Spectrometer (SM1 magnet)
Small Angle Spectrometer (SM2 magnet)

Small Angle Spectrometer (SM2 magnet)

ECAL1

HCAL₁

RICH

SM1

Polarized

Target.

Veto

SM₂

ECAL2 HCAL2 Muon-filter

- High energy beam
- Large angular acceptance
- Broad kinematical range
- Momentum, tracking and calorimetric measurements, PID

Data-taking years: 2002-2011

Longitudinally polarized (80%) μ⁺ beam:

Energy: 160/200 GeV/c, Intensity: $2 \cdot 10^8$ μ^+/spill (4.8s).

Target: Solid state (6LiD or NH₃)

- 6LiD 2-cell configuration. Polarization (L & T) \sim 50%, f \sim 0.38
- NH₃ 3-cell configuration. Polarization (L & T) $\sim 80\%$, f ~ 0.14

COMPASS experimental setup: Phase II (DY program)

Muon-filter

SciFi, Silicon, MicroMegas, GEM,

MWPC, DC, Straw, Muon wall

VD, DC5, new DAQ...

Large Angle Spectrometer (SM1 magnet)

Small Angle Spectrometer (SM2 magnet)

ECAL1

HCAL₂

RICH

SM1

Polarized

Target

Veto

ECAL2 HCAL2

Muon-filter

- High energy beam
- Large angular acceptance
- Broad kinematical range
- Momentum, tracking and calorimetric measurements, PID

Nuclear targets \rightarrow unpolarized DY, DY cross-sections, EMC effect

Data-taking years: 2014 (test) 2015 and 2018

SM₂

High energy π^- beam:

Energy: 190 GeV/c, Intensity: $10^8 \pi/s$

Target: Solid state

- NH₃ 2-cell configuration. Polarization $T \sim 73\%$, $f \sim 0.18$
- Data is collected simultaneously with both target spin orientations Periodic polarization reversal to minimize systematic effects

Nuclear target (AI) Aluminum cone MM01 25cm downstream last alumina layer Stainless Steel vertex detector 20 cm aluminum box cover alumina Tungsten beam plug

Raw data

Classic production work flow

- Raw data stored on Castor
- Data is being requested to be copied from tapes to disks before processing
- Task moves files directly from Castor to Ixbatch for processing, several programs are used for processing
- After processing results are being transferred to EOS for merging or short-term storage or directly to Castor for long-term storage
- Merging, cross checking
- Results are being copied to Castor for longterm storage
- All routines executed under production account at lxplus and use bash commands

ProdSys redesign motivation

- Replace computing site from LSF, which will be decommissioned by the end of 2018, to Condor
 - Even more: get ability to switch computing sites, get more resources, any type, not only LSF
 - Even more: get a system which is able to send jobs to some HPC
- Remove strict connectivity to AFS, which will be replaced by EOS FUSE
- Remove connection to Castor, which will be replaced by EOS

Grid environment

- AFS COMPASS group
 - Production account
- Local batch queue
- EOS directory
- AFS directory to deploy production software

- Virtual organisation
 - Production role
- Computing element
- EOS storage element
- CVMFS

Grid production work flow

- Raw data stored on Castor
- Files are being requested to be copied from tapes to disks before processing
- Task moves files via xrootd directly from Castor to CERN Condor
- After processing results are being transferred to EOS for merging and short-term storage
- Merging is done on CERN Condor
- Results are being copied to Castor for long-term storage
- All management routines work using X509 proxy authentication

ProdSys components

- 1. Task requests layer: Web UI
- 2. Job definition layer
- 3. Job execution layer: PanDA
- 4. Workflow management
- 5. Data management
- 6. Monitoring

1. Task requests layer

Web UI:

- execution parameters
- paths
- version of software
- list of chunks or runs
- etc.

2. Job definition layer

Automatically generates list of jobs for task basing on parameters

Job actions allow to manage any set of selected chunks

3. Job execution layer: PanDA

4: Workflow management

Decision making mechanisms guide task from the definition till archive

Each step of each task is managed independently

5: Data management

- Stage-in and stage-out files on Castor
- Number of events in raw files being delivered to ProdSys database
- Job results move to Castor as soon as they are ready
- Job log files are zipped and moved to Castor when task is finished
- Job results and PanDA pilot log files are being removed from EOS when task is finished

6: Monitoring

Covers all activity during production/task/job lifecycle

Infrastructure overview

- PanDA server over MySQL, Monitoring, AutoPilotFactory, Production System deployed in Dubna at JINR cloud service
- Condor CE at CERN
- PBS CE at JINR
- EOS SE at CERN
- PerfSonar service at JINR cloud network segment to monitor network connectivity between JINR and CERN

Data catalog

- Raw and processed data are stored on Castor
- Raw data catalog in Oracle
 - Naming convention: year/period/run/chunk
- ProdSys database as catalog of processed data
 - Naming convention: year/period/production/run-chunkprocessing options

Production job types

- Normal
 - File downloads from CASTOR to computing node
 - After processing being transferred to EOS
- Merging
 - Data stages in from EOS
 - Up to 40 results of normal jobs merged into one file with desired filesize (4Gb)
 - After processing result file being transferred to EOS
- Cross check
 - Internal job, uses PanDA job metrics
 - Compares number of events in file chunks and in merged file per run

Stats and performance

- Since August 2017
 - ~2 000 000 chunks of raw data processed
 - ~60 000 000 of events processed
 - ~400TB of merged data produced and migrated to Castor
 - ~4 000 000 jobs processed since August: reco, ddd filtering, merging of mDST, hist and event dumps
- Up to 20 000 of jobs being processed simultaneously

Processing on Blue Waters

- Raw data delivered to BW manually via Globus Online
- Production software installed on local file system
- Calibration db runs on each computing node, i.e. per each 32 jobs, first job on the node starts new db instance
- PanDA Multi-Job Pilot is used, extended by COMPASS logic
- Task submission, management and monitoring fully integrated into ProdSys UI and PanDA monitoring
- Processing 2-3K jobs, 100 nodes, target is to process 100k of jobs

Summary

- COMPASS Grid Production System provides automated data processing from task definition till archiving
- Key features:
 - Production management Web UI allows to define a task, send, follow and manage task at any step during processing
 - Via PanDA layer jobs may be delivered to any type of computing resource: Condor, LSF, PBS, etc.
 - Rich monitoring

Backup

System performance

JINR Tier2

Kesource Centre JINK-LUGZ — Iotal number of Jobs by VU and Month (Umciai VUS)

	V0	Feb 2017	Mar 2017	Apr 2017	May 2017	Jun 2017	Jul 2017	Aug :
alice		23,805	33,069	57,822	37,082	29,131	28,196	26
atlas		349,363	323,132	397,144	366,224	320,417	335,946	308
biomed		3,962	5,079	17,423	54,963	3,277	2,186	1
cms		70,670	87,329	68,556	48,814	46,711	55,061	66
dteam		0	0	0	2	0	0	
fermilab		2,320	11,253	9,313	36,665	66,805	27,778	33
lhcb		39,035	47,090	81,684	64,305	55,729	76,062	51
ops		14,146	15,674	15,441	13,687	12,989	13,476	13
vo.compass.cern.ch		0	0	2	208	0	198	64
Total		503,301	522,626	647,385	621,950	535,059	538,903	567
Percent		8.07%	8.38%	10.38%	9.97%	8.58%	8.64%	9.1
1 - 9 of 9 results								