
1/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Improving efficiency of analysis jobs in CMS.

Todor Ivanov for the CMS collaboration

July 10, 2018

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

2/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Introduction

CMS experiment has a workload management system that schedules and executes
MonteCarlo production and user Analysis tasks in a distributed Grid infrastructure.
Past focus : make jobs run, offer users painless and transparent access to the
Grid. We have been largely successful.
Recent focus: on efficiency and optimisation: turnaround time, CPU efficiency,
scalability of the system.
This contribution:

improving the execution of analysis jobs. I.e. job submitted by users (few
hundred different people using the system at any given time)
thus w/o access to the application itself

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

3/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Global Pool & glideinWMS
Analysis jobs submission: CRAB

Global Pool & glideinWMS

Based on glideinWms:
Users: Vanilla HTCondor jobs via ad hoc tools :
WMA for production, CRAB for analysis
Glidein FrontEnd:
glideins (PilotJobs) → Grid Sites
PilotJobs: 48 hours; 8 cores;
1 PilotJob → 1 HTCondor startd which joins the
GlobalPool
1 PilotJob runs many multi/single-core jobs and
keeps reallocating freed up cores until the end of
its lifetime

CMS takes ownership of all issues of pool fragmenta-
tion due to running variable number of multi/single-core
jobs of different length

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

4/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Global Pool & glideinWMS
Analysis jobs submission: CRAB

Analysis jobs submission: CRAB

CMS Remote Analysis Builder (CRAB):
Turns a high level request (run this executable on this set of files) into a set of jobs
whose execution is controlled by HTCondor DAGMAN
Later an Asynchronous StageOut component moves job outputs from remote site stor-
age to the user preferred site

Optionally record the files in CMS Dataset Bookkeeping System
Splitting: 1 request (task) → many jobs

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

5/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Global Pool & glideinWMS
Analysis jobs submission: CRAB

Three lines of work

Automatic Splitting
Optimise job running time (splitting a large task in many jobs)

Too long: High chance of killing by glitch → wasted resource
Too short: Too many jobs, unnecessary load on infrastructure, too much
time in overheads

Time Tuning
Optimise job to slot allocation (tune the job time requirement)

Avoid killing/restarting pilots too soon, exploit the tail of each slot
Majority of jobs ask for 20h but only run 30min or less, how close to the
pilot end of life is OK to start them ?

Overflow
Optimise scheduling of jobs across sites (overflow from busy site queues)

We used to run where data are
We can now exploit xrootd to run also at other sites
But can’t fully ignore where data are

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

6/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans
Automating Splitting

Automating Splitting: Theory

Before: 1 task → 1 DAG
Splitting parameters configured by the user
Results in thousands of very short jobs

Bad for scaling
After: 1 task → a few DAG’s

All decisions taken out of user hands
One PROBE DAG to estimate time, memory, disk
needs
Splitting parameters computed in per event basis
Target: 8h jobs
One PROCESSING DAG to do the work
Three tail stages - 3 TAIL DAGS

one when 50% of the PROCESSING is done,
one at 80%,
one up to the end

Fewer TAILs for small tasks (<100 jobs)
Jobs are set to run for a fixed time. If they don’t
complete all work, they finish gracefully and the
remaining work is taken care by the tail jobs

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

7/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans
Automating Splitting

Automating Splitting: Practice

Before: 1 task → 1 DAG
Good: Splitting done in the TaskWorker (one server, centralized logs, easy to debug)
Bad: User finds best splitting by trial and error running same things N times (invisible
waste)
Overall: Non optimal, but when things go wrong we blame the user and life goes on

After: 1 task → a few DAG’s
Good: It really works
Bad: Splitting done on the schedd (15 machines, log scattered in user directories, hard
to rerun in debug mode).
Hard part: Not all use cases can be addressed, e.g. for MonteCarlo generation there
is no splitting.
Overall:

When things go wrong, it is on us to explain, solve and prevent
Large variation of WN CPU power and data serving performance at sites introduces
large uncertainty in jobs run times. Leads directly to the need for Time Tuning
(next slides).

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

8/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans
Automating Splitting

Automating Splitting: Results

In production since February 2018.
Users encouraged but not pushed.
Few issues, generally high satisfaction.
Extending usage requires education cam-
paign: manpower issue.

Next step once all commissioning
work is completed.

Current adoption is 2% but could grow
to >> 50%

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

9/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current Implementation
Time Tuning
Overflow

Automating Tuning and CRAB3:

Editing job requirements: HTCondor JobRouter
Both following lines of work (Time Tuning and Overflow) rely on modifying job
requirements while jobs are idle in the HTCondor queue → different scheduling →
freedom to optimise.

There’s a tension:
Global overview (best decisions) vs Local
action in each schedd (efficient).

And there’s a criticality:
Spiral of Death:
Massive condor_qedit =⇒ schedd load
=⇒ long negotiator time =⇒ starving pi-
lots =⇒ job restarts =⇒ more load on
the schedds

Our solution:
A central process to collect information and
make stats based on a feed of HTC clas-
sAds to Elastic Search.
HTCondor JobRouter to do the actual
classAd remapping locally to each schedd
Strategy already in use for organized Pro-
duction, but larger workflows and much
more top/down control

Slow feedback → care in turning knobs
O(10min) in what we do - O(hours) in
HTCondor reaction

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

10/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current Implementation
Time Tuning
Overflow

Time Tuning: Theory

Jobs request a MaxWallTime (MWT) at submission.
HTCondor kills jobs which hit it.

MWT is a common classAd atribute for all jobs in
a task.

Problem: Majority of jobs ask for the default 20h MWT
but most only run 30min or less

This is not because users are nasty
Even if jobs are created equal, they run for
different times
Even good willing users need to indicate a lar-
gish, safe, value

Automatic splitting will help, but not all tasks will
use it:

Set a realistic limit for PROCESSING DAG
Jobs which run longer are resplitted so that a
safe maxTime can be set which still is O(hour)

Approach: Introduce EstimatedWallTime (EWT).
Use EWT to schedule, MWT to kill
EWT : realistic. MWT: conservative.
EWT << MWT

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

11/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current Implementation
Time Tuning
Overflow

Time Tuning: Practice

Implemented solution:
EWT computed as soon as one job
completes and dynamically updated
every 10 min
EWT estimate algorithm tuned to con-
tain most but not all jobs:

Pick 95th percentile of collected
RunTimes and apply correction
dependent on #jobs

EWT added and updated in each job
via JobRouter.
Jobs can keep running in the pilot’s
tail(the pilot’s retire time) even after
EWT expires, up to MWT
If a job reach a pilot’s end of life-
time it is automatically and transpar-
ently restarted by HTCondor (but CPU
is wasted)

Issues to overcome:
Limited statistics to work with, first jobs to complete may be not representative

This is a bullet that we have to bite
Properly measure what we gain (less fragmentation) and what we lose (wasted CPU)

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

11/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current Implementation
Time Tuning
Overflow

Time Tuning: Practice

Implemented solution:
EWT computed as soon as one job
completes and dynamically updated
every 10 min
EWT estimate algorithm tuned to con-
tain most but not all jobs:

Pick 95th percentile of collected
RunTimes and apply correction
dependent on #jobs

EWT added and updated in each job
via JobRouter.
Jobs can keep running in the pilot’s
tail(the pilot’s retire time) even after
EWT expires, up to MWT
If a job reach a pilot’s end of life-
time it is automatically and transpar-
ently restarted by HTCondor (but CPU
is wasted)

Issues to overcome:
Limited statistics to work with, first jobs to complete may be not representative

This is a bullet that we have to bite
Properly measure what we gain (less fragmentation) and what we lose (wasted CPU)

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

12/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current Implementation
Time Tuning
Overflow

Time Tuning: Results

CONSERVATIVE SETUP:
JOBS running less than EWT: 95%
JOBS running longer but completed: 4%
JOBS restarted once and completed: 1%

STILL VERY EFFECTIVE:
Jobs which were TimeTuned
filled mostly short living pilots
Jobs which were not Time-
Tuned filled pilots longer than
21 hours

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

13/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current Implementation
Time Tuning
Overflow

Overflow: Why, What, How

Problem: By default jobs are sent to sites which hosts the input data =⇒ long
waiting times when target sites are overloaded.
Solution: run some of those jobs elsewhere. CMS software exploits our xrootd
data federation for remote reads
Old Way ad hoc glideinWms FrontEnd group to define topology and running limits.
Deployed for US sites since a few years. Works, but can’t extend it:

US sites large and homogeneous. Dedicated pilots → pool fragmentation.
glideinWms suffers with many FrontEnd groups

New Way: JobRouter dynamically changes list of desired execution sites for some
jobs

Central overview opens to advanced scheduling decisions :e.g. add WAN
information

Difficulties:
will an overflow job complete earlier ? how much wait is too much wait ?
how much (more) remote reading a given site can handle ?
more remote reads = more,harder to debug, failures
if there are failures, are our remote reads the reason ?
large differences in site size and connectivity
need to go over country boundaries

Approach: Start slowly, watch carefully, push slowly, iterate.
Users stand “wait but OK” better than “fail and need to retry”
Site admins do not like more problems and expect us to have extreme care

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

14/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current Implementation
Time Tuning
Overflow

Overflow: Results

Current use limited to T1s:
– Facing the Tier1 problem is Crit-
ical for us. Analysis jobs get a
small share in T1s. But there are
datasets that are currently placed
only at T1
Work in progress:
Implementing a maximum over-
flow in a country and providing a
way to substitute the old Overflow

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

15/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Summary

We operate a complex setup with O(40k) analysis jobs running at any moment and
where many things change constantly outside CMS Analysis Operation control.
We have to be careful. It is NOT easy to push changes in production transparently
to the user community nor to disentangle effect of the various changes.
And that while our monitoring infrastructure is being migrated/rebuilt.

But we managed to deploy the needed knobs and dials and we look forward to learn
how to better tune the system.

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

16/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Future lines of work

Some of what we do requires guessing what users really need
Inferring the behaviour and needs of large tasks from small initial samples
Very tricky when we have many tasks with not many (< 100) jobs each

Some requires guessing the future
How sites and networks will react to load that we are about to place on them

Will be a good arena for:
Central vs. Local control
Infer large sample behaviour from limited statistics
Machine Learning
Network scheduling

Future will be more fun than the past !

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

17/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Thank You!

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

18/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Backup Slides:

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

19/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current implementation of Time tuning

JobCountPerTask (LogScale):

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

20/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current results

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

21/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Current results

– Few more plots showing the results –

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

22/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Overflow - Problem:

The primary need: to achieve a better resource utilisation
The secondary need: to protect the sites from being flooded with jobs they
cannot process || serve data for them.
The old Overflow mechanism - what does it suffer from:

Statically defined overflow regions - can’t be based on other criteria
characterizing “proximity”
Overflow matching decision happens in the timescale of pilot lifetimes - not
flexible enough to respond to faster changes in the status of the distributed
CPU and storage resources
Requires additional FE groups to be set - a limitation in practice to the
different number of settings that could be configured at once.
Based on a special type of pilots - fragmentation of the resources, increasing
wastage

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

23/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Structure:

Three basic abstractions:
Information Lifetime:

static
dynamic

The OverflowLevel:
PERTASK
PERJOB
PERBLOCK
PERFILE
PERDATASET

The OverflowType:
GEO
TIER1
TIER2
DATALOCATION
LOCALLOAD
SRCLOAD
DSTLOAD

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

24/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

Decision making & Subsets

Weighted sum vs. Weighted single
decision.
Estimating the weights could be
dynamic:
In the future we can apply more
elaborate mechanisms for
estimating the optimal weights
according to the prompt feedback
about the reaction of the system.
Subsets intersections.

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

25/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

New Methods for improving the accuracy of Automatic Time Tuning
We estimate the Job Wallclock Time (EWT) based on the first completed jobs (minTask-
Stat) and continuously modify the Requested Wallclock Time of the idle jobs while gaining
statistics. This is a method which has the intrinsic characteristics of a negative feedback
amplifier. As expected, the error with respect to the Real Time (RT) follows an normal
distribution’:

err = EWT −RT (1)

In order to minimise this error and avoid negative values we introduce a correction factor:

err = CorrFactor ∗EWT −RT

CorrFactor = f(n)

n : numberofcompletedjobs

Different correction factors considered:
static correction factor, a Heaviside function:

f(n) =
{

1 if n < minTaskStat
const if n > minTaskStat (2)

minTaskStat - here is a config parameter which acts as a trigger for
the mechanism
logarithmic correction factor:

f(n) = logn(minTaskStat) (3)

- very steep
- minTaskStat - is now a parameter defining the slope of the
function that the correction factor will follow while gaining more
statistics
- a single parameter function
- the negative error is still at around 16% (shows dependency on
more than a single parameter)

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

26/26

CMS Computing on Grid
Automating Splitting
Automating Tuning

Conclusion & Future plans

New Methods for improving the accuracy of Automatic Time Tuning

polylogarithmic:
motivation - commonly used for estimating the order of time or
memory consumption

f(n) =

ε∑
k=1

ak(logn(minTaskStat))k (4)

– more moderate slope
– high computational cost: O(nε) for high values of ε
– now we can easily put more than a single parameter in the
function and decide the order/degree up to which we want to
calculate and ε becomes the number of independent parameters.
candidate parameters:

job dependent:
number of jobs in the workflow with error code diff 0
dataset characteristics: like number of lumisections
distance between slot and dataset ... etc.

infrastructure dependent:
network throughput of the slot
reliability of the (slot) ... etc

Todor Ivanov, University of Sofia “St. Kliment Ohridski” for the CMS collaboration Improving efficiency of analysis jobs in CMS | CHEP2018

	CMS Computing on Grid
	Global Pool & glideinWMS
	Analysis jobs submission: CRAB

	Automating Splitting
	Automating Splitting

	Automating Tuning
	Solution
	Time Tuning
	Overflow

	Conclusion & Future plans

