System Performance and Cost Modelling in LHC computing

Andrea Sciabà on behalf of the HSF/WLCG Systems performance and cost modelling WG

CHEP 2018 Sofia, 9-13 July 2018

The High Luminosity challenge

- Despite ongoing efforts, we do not know yet how we will manage to process HL data with the expected levels of funding
- 10x increase in trigger rates, NLO & NNLO. 5x increase in pile-up
 - The latter involves >> linear growth in reconstruction time
- Price/performance advances slowing down
 - 20% yearly gains are very difficult
- CPU and disk short by a factor ≈ 5
 - Assuming no "revolutionary" changes
- Strong need to quantitatively understand our efficiency and how we can optimise performance

CHE/HSUE Price/performance evolution of installed CPU servers Price/performance evolution of installed disk server storage

HL-LHC baseline resource needs (LHCC Sep. 2017)

Worldwide LHC Computing Gri

The Working Group

- WLCG and HSF joined forces to study how we can achieve a more cost-effective computing on the Run3/4 timescale
 - Start by developing a deep understanding of current workloads, resource utilization, and their impact on site costs
 - Proceed to explore future scenarios, estimate possible improvements in efficiency (in software, infrastructure and computing systems)
 - Develop tools and methods to do the above, that can be used in the community
 - At the same time, establish a "culture of performance"
 - Site cost cannot be compared but locally optimised
 - Active participation by experiments, sites and IT experts
 - Conveners: J Flix, M Schulz, A Sciabà
 - About 35 active members → wlcg-SystemsPerformanceModeling@cern.ch
 - Links with HEPiX benchmarking working group
 - Web site: https://twiki.cern.ch/twiki/bin/view/LCG/WLCGSystemsPerformanceModeling
 - Meetings: https://indico.cern.ch/category/9733/

Worldwide LHC Computing Gr

Areas of work

- Several goals have been identified for the short, medium and long term and some are well under way or even completed
 - Identify representative experiment workloads that can be run in a controlled environment and package them for easy distribution
 - Define which metrics best characterise such workloads
 - Set up a distributed testbed to run tests
 - Establish a common framework for estimating resource needs
 - Define a process to evaluate the cost of an infrastructure as a function of the experiment requirements

Metrics and workload characterisation

- Identify the metrics that best describe a workload
 - To understand if the hardware is used efficiently \rightarrow software experts
 - To quantify the resource utilisation on the node \rightarrow site administrators
 - Record time series and extract summary numbers (averages, 95th percentile values, etc.)

Current metrics

- Started with an already comprehensive list of basic metrics
- Will expand / contract as needed work in progress
- The goal is to have the smallest amount of parameters that describes as completely as necessary the workloads

Metric	Туре	Source	Scope	Command	Insight	Comments
I/O rate	gauge	/proc/diskstats	global	iostat 1 1	Total IO operations ongoing, can calculate a %usage of theoretical maximum of spinning/ssd media	As /proc/diskstats is global some method of isolating a process is necessary to assess accurately (containers/namespaces?)
I/O bandwidth	gauge	/proc/ <pid>/io</pid>	process	prmon	Total bytes read/written by a process, gives indication of rates and total usage	

Metric	Туре	Source	Scope	Command	Insight	Comments
%usage	gauge	Tool internal	process	/bin/time <x> prmon</x>	Gross measure of cpu utilisation, real/user/sys. Indicates potential overheads and militi-process scaling.	Use application metric of event loop time to change all of these per second metrics into per event (see below)
Thread #	gauge	/proc/ <pid>/st atus</pid>	process	grep Threat	G res a minasure of how much of a running payload is parallel/serial.	Required for multi-threaded code
Process #	gauge	Process list	process	pstree -p wc	As above but for multi-process codebases.	Required for multi-process code

Metric	Туре	Source	Scope	Command	Insight	Comments
Memory usage	gauge	/proc/ <pid>/smaps /proc/<pid>/status</pid></pid>	process	prmon	Allows understanding of how memory develops over time, can be used in conjunction with Process/Thread count to examine dependency.	VMEM is application controlled, RSS is how much the kernel really maps, PSS accounts for shared pages better (important for parallel processing).
Avg Mem	gauge	/proc/ <pid>/smaps</pid>	pri cyss	prmor	A no int of the nory that needs budget thor the bulk of the runtime of the job payload.	(see above)
Max Mem	gauge	/proc/ <pid>/smaps</pid>	process	prmon	Amount of memory that needs to be made available instantaneously - required for setting hard limits on a job payload to detect erroneous jobs.	(see above)

Metric	Туре	Source	Scope	Command	Insight	Comments
Network usage	gauge	/proc/net/dev	global	Possible update to	Aggregate Tx/Rx bytes to assess total network load	As /proc/net/dev is global some method of isolating a process is necessary to assess accurately (containers/namespaces?)
Network rates	gauge	Socket statistics	process	ss -ip	Per process rates, can be used to assess /cvmfs usage.	More work needed to understand if the numbers provided are useful

Worldwide LHC Computing Gr

Metrics measurement

- PrMon is a tool to monitor resource usage of a process tree
 - Derived from the ATLAS MemoryMonitor
 - https://github.com/HSF/prmon
 - It includes most of the previously listed metrics (from /proc)
 - VMEM, RSS, PSS
 - rchar/wchar (bytes read/written by the process), read_bytes/write_bytes (bytes read/written from/to the storage layer)
 - · User time, system time, wallclock time
 - rx_bytes, tx_bytes, rx_packets, tx_packets
 - Actively worked on
- Trident
 - Measures CPU, IO and memory utilisation based on hardware counters
 - Very detailed, almost no overhead
 - See Servesh' and David's poster "Trident: A three pronged approach to analysing node utilisation" (<u>link</u>)
- Collection of reference workloads from the LHC experiments
 - Event generation, Geant4 simulation, digitisation, reconstruction, derivation steps
 - Local file access or remote access via xrootd
- Making power and complex tools accessible for users and site managers on all levels

PrMon monitoring plots: examples

ATLAS Digi Reco - memory

ALICE sim+reco - Memory

CMS DIGI - IO

CMS DIGI - Network

V C Computing Grid

Measuring performance with Trident

- Several metrics calculated
 - CPU: IPC, top-down analysis (time spent on front-end/backend, retiring/bad speculation), execution unit port utilisation
 - Memory: bandwith usage, transaction classification (pagehit, page-empty, page-miss)
- Can be used to see how workloads differ (or resemble) each other and the benchmarks we use (HS06, SpecCPU2017?)
- CPU counters are a powerful (but complex) tool and Trident makes them accessible

Worldwide LHC Computing Gr

Resource estimation (1/2)

- The goal is to define a common framework for modelling the computing requirements of the LHC experiments
 - Models as collection of parameters and standard calculations, to be as generic and customisable as possible
 - Takes as one of its inputs the characteristics of the workflows
 - Reproduce with reasonable accuracy (but not supersede!) the official estimates from the experiments
 - Allow to play with different scenarios to explore potential gains
- Current status
 - A first iteration of the framework was obtained by refactoring and generalising (to a certain extent) a framework used by CMS
 - https://github.com/sartiran/resource-modeling
 - Elicited strong interest from other LHC experiments
 - Agreed as a common basis for future development

Resource estimation (2/2)

- LHC parameters (trigger rates, live fractions, shutdown years, ...)
- Computing model (event sizes and processing times, improvement factors, ...)
- Storage model (numbers of versions, replicas, ...)
- Infrastructure (capacity model, T1 disk and tape, ...)
- Time granularity is yearly
 - While resource needs vary over the year
- No network estimates (for now)
- Extrapolation to HL-LHC relies on very uncertain estimates the workloads don't exist yet

Site cost estimation models

- Develop a method to assess how well an infrastructure is matched to the needs of the experiment workloads
 - Capacity can be matched to local cost
 - Fabric can be tuned to maximise the capacity over cost
 - Several site people in the WG went through a cost estimation exercise starting from an "example" workload
 - The goal is <u>not</u> to compare sites, but to provide tools to optimise expenditure
 - Actual model developed in IN2P3 and successfully applied to T1 to model yearly investment per sector
 - https://indico.cern.ch/event/304944/contributions/1672219/ (CHEP 2015)
- Main sectors
 - Hardware: servers, racks, switches
 - Electricity: to run the hardware, cooling
 - Infrastructure: rooms, routers
 - Manpower

Worldwide LHC Computing Grid

Infrastructure costs at CCIN2P3: hardware

Main conditions

- Exponential decrease of costs
- Flat budget
 - Used for capacity replacement + capacity increase
- Replace hardware when warranty expires

$$c^*(t) = c(t) \frac{r}{1 - (1 - r)^{\tau}}$$

 $c^* = modeled cost$

c = real cost

 τ = warranty time

 $r = \cos t$ decrease rate

- Model predictions checked within 20% of reality
 - Most of the uncertainty comes from tape

Source: R. Vernet

Infrastructure costs at CCIN2P3: power and total

- Power consumption cost changes more difficult to predict
- Predicting future costs is possible
- Other sites are invited to use the same principles

Power price

CPU: 39%Disk: 26%Tape: 2%Rest: 33%

hardware cost

power cost

=

total cost

Worldwide LHC Computing G

Areas of potential savings

- Many "small" improvements can stack to provide significant gains
- A quantitative estimation is highly desirable
 - OK to quantify not very realistic scenarios as it still provides a measure of the "gap"
 - Numbers below are based on exploratory work and are not to be taken literally the goal is to stimulate more accurate estimates
 - Some savings could be reduced by "side effects". Eg.: storage consolidation could cause loss of resources for some funding schemes → another argument for advocating a careful evaluation
 - https://indico.cern.ch/event/704519/

Change	Effort Sites	Effort Users	Gain	
managed storage on 15 sites + caches	Some on large sites/gain on small sites	little	40% decrease in operations effort for storage	
Data redundancy by tape backup	Some large sites	Frameworks some	30% disk costs	
Reduced data replication and cold data	little Frameworks some		15% disk costs	
Scheduling and site inefficiencies	Some	Some	10-20% gain CPU	
Reduced job failure rates	Little	Some-Considerable	5-10% CPU	
Compiler and build improvements	None	Little	15-20% CPU	
Improved memory access/management	None	Considerable	10% CPU	
Exploiting modern CPU architectures	None	Considerable	100% CPU	
Paradigm shift algorithms (ALICE HLT)	Some	Massive	Factor 2-100 CPU	
Paradigm shift online/offline data (LHCb and ALICE)	Little	Massive	2-10 CPU 10-20 Storage	

Cumulative evolutionary changes

Storage costs: -45% less cost

Site operations for storage: -40%

- CPU: +200% throughput

Source: M. Schulz

HL-LHC predictions

What will change?

- Running conditions (luminosity, pile-up, trigger rate)
- Event generation (LO + NLO + NNLO)
- Detector simulation (full + fast simulation)
- Detectors (some completely new, with much more fine-grained information)
- Reconstruction (new algorithms, momentum cuts)
- Analysis (new data formats)
- Software (new algorithms, machine learning, vectorization)
- Fabric (many-core CPUs, GPUs, accelerators)
- Need to develop sensible models for future workloads
- Initially, lots of unknowns, huge uncertainties
- Create "fake" workloads?

HL-LHC computational complexity

- Event size
 - Linear in μ , apart from the most compact analysis formats
- Reconstruction time
 - Dependency with μ is linear for
 - Calibration
 - Pattern recognition for low μ
 - Linking of tracks and calorimetric objects for low μ
 - It will be exponential for high μ for
 - Pattern recognition
 - Overall, it can be modelled as $t(\mu)=a\mu+be^{\mu-\mu crit}$
- Simulation time
 - Event generation and simulation independent from μ
 - Digitisation linear in μ
- Analysis time
 - Independent from μ

Collaborations

- The cost model WG is by construction tightly connected with other groups and communities
- HEPIX
 - Mainly on benchmarking and fabric technology evolution
- WLCG DOMA (Data Organisation Management and Access)
 - Aims at greatly reduce the cost of storage by consolidation, caching, rationalization of protocols and services
- WLCG Archival Storage Working Group
 - Improve understanding of the cost of tape archives
- CERN EP
 - R&D on software to meet the challenges of Run3 and HL-LHC
- HSF
 - Collaborating on software optimization and tools

/ LC Computing Grid

Conclusions

- The WLCG/HSF systems performance working group was established to improve our understanding of the evolution of the cost of computing for LHC (and HEP)
 - HL-LHC requires us to squeeze all the performance we can get at all levels
- The WG is active on many fronts and is already achieving important results
 - Reference workloads and performance analysis tools
 - Model for site cost estimation
 - Framework on resource need estimation
- Work is still in progress but the time scale is long
 - One of the biggest challenges is to produce reliable estimates for HL-LHC
- Several interactions with many other activities and bodies in the community
 - Active participation from more people is always welcome and encouraged!

Author list

C Biscarat, T Boccali, D Bonacorsi, C Bozzi, R Cardoso Lopes, D
Costanzo, D Duellmann, J Elmsheuser, E Fede, J Flix Molina, A
Forti, M Gasthuber, D Giordano, C Grigoras, J Iven, M Jouvin, Y
Kemp, D Lange, H Meinhard, M Michelotto, G D Roy, A Sansum,
A Sartirana, M Schulz, A Sciabà, O Smirnova, G Stewart, A
Valassi, R Vernet, T Wenaus, F Wuerthwein

BACKUP SLIDES

Workload metric summary

Туре	Events	Duration (hours)	CPU efficiency (%)	PSS/proces s (MB)	Disk read rate (kB/s)	Disk write rate (kB/s)	Network traffic (kB/s)
ATLAS sim	1000	9.4	98	500	140	70	negligible
ATLAS digi reco	2000	4.0	84	1500	2600	1900	negligible
ATLAS derivation	?	2.3	96	1400	5600	580	negligible
CMS GENSIM	500	0.5	97	200	600	240	negligible
CMS DIGI premix	500	0.25	58	400	1600	1900	3300
ALICE pp	1	0.3	100	700	600	60	negligible

