
Producing Madgraph5_aMC@NLO gridpacks and using TensorFlow GPU
resources in the CMS HTCondor Global Pool

Brian Bockelman6, Edgar Fajardo Hernandez4, Diego Davila Foyo1, Kenyi Hurtado Anampa7, Farrukh Aftab Khan3, Krista Larson3, James Letts4,
Marco Mascheroni3, David Mason3, Antonio Perez-Calero Yzquierdo2, Todor Trendafilov Ivanov8

1 Autonomous University of Puebla (MX)
2 CIEMAT & PIC (ES)

3 Fermilab (US)

4University of California San Diego (US)
5University of Malaya (MY)

6 University of Nebraska - Lincoln (US)

7 University of Notre Dame (US)
8 University of Sofia (BG)

While submission of CMS user jobs to the Global Pool is mostly managed by CRAB3, the standard analysis workflow management
tool, the generation of matrix elements for high energy physics processes via Madgraph5_aMC@NLO and the usage of machine
learning tools with GPU resources are independent use-cases that require special adaptation in order to take advantage of the

Global Pool resources. This work describes the challenges and efforts performed towards adapting such workflows for it.

The submission point - CMS Connect

Deep learning and GPU resources

Generating Madgraph5_amC@NLO gridpacks

CMS Connect provides a service with a Tier 3-Like interface where users can submit condor jobs to the CMS Global Pool, a global HTCondor pool provisioned by GlideinWMS. It complements CRAB3, dealing with
a different set of analysis workflows, such as Madgraph gridpacks and the use of GPU resources with TensorFlow jobs.

(Offline) Analysis resource usage

CMS Global
Pool

U.S. CMS T1

U.S. CMS T2

U.S. CMS T3

Global CMS

CRAB3

login.uscms.org

60k

● Better suited for:
○ cmsRun jobs

■ These include a large range of
analysis workflows within the
CMSSW framework for
simulation and data analysis.

○ Random scripts using distributed data
sets, which CRAB can handle easily.

CRAB 3

● Good for more general purpose
workflows. For example:
○ Analysis scripts that users might

prefer to handle directly with
condor/condor_dagman.

○ Workflows that already have a batch
submission manager (e.g.,
Madgraph5).

○ Machine learning tools + GPU
resources (TensorFlow)

CMS Connect

CMS Connect activity in the last 90 days

Producing "gridpacks" is one of the very first steps in the Monte Carlo request
submission chain.
This kind of workflow however, is not integrated with the CMS standard
executable (cmsRun) or CRAB3. A generator's package is used instead to
produce these gridpacks in a standalone way, using its own submission
managers.
The Monte Carlo contact persons using different local resources for producing
these gridpacks didn't record the usage in CMS dashboards and had to take into
account some submission differences for each resource. For example:
● CERN CAF (resources shared between all CERN-based experiments: ATLAS,

CMS, ALICE, LHCb, etc):
○ Using the LSF batch system, requires working with different queue

types (1nd, 2nw, etc) and submitting the whole master process as a job.
○ Using HTCondor needs to deal with AFS tokens and k5reauth.

● FNAL LPC CAF uses HTCondor, used by US-based Institutions.

Submitting these gridpacks to the Global Pool offers:
○ A uniform layer through HTCondor for these workflows, accessing all

resources CMS has access to, like any other workflows handled e.g., via
CRAB3.

○ The activity is monitored and recorded in CMS monitoring dashboards.
(Better accounting).

Some adaptations were made to make madgraph compatible with the way the
Global Pool works, including:

● Dynamic adjustment of requested walltime per job when needed.
● Specifying remote CMS Sites for submission.
● Handling typical transient errors translating into jobs getting held.
● Setting specific HTCondor classads for dashboard reporting.

MC request submission

Typical gridpack activity in the Global Pool on a day

Generating gridpacks in the Global Pool

CODEGEN step INTEGRATE + MADSPIN steps

Submit as a condor
job

Transfer output as a
sandbox

Use utility to extract
sandbox (fix hardcoded

paths, etc)

Let Madgraph do the
condor submission and

transfer of data.

● Report submitted jobs to the CMS
monitoring dashboards

● Select desired sites in the global pool for
submission.

CMS Connect submit wrapper

condor

submit

● Check job status
● Adjust max walltime if necessary
● Release jobs with common

transient errors for retrial (jobs put
on hold by remote host, transient
transfer errors, etc)

HTCondor python bindings

Adjust payload environment to
propagate the proper libraries via
cvmfs to handle madgraph
dependencies inside singularity
containers.

Adjust madgraph wrappers

HTCondor job

Even though Machine Learning (ML) has been a topic for decades
and different ML algorithms have been used in high energy physics
analysis since the nineties (e.g., Boosted decision trees, random
forest, artificial neural network algorithms, etc), the boom in terms
of GPU resources demand started with the training of deep neural
networks (a subset of ML inspired in artificial neural networks) just
few years ago.

Deep learning algorithms involve a fair amount of matrix
multiplications and other operations that can be massively
parallelized and thus sped up on GPUs, due to the fact that GPUs
can have thousands of cores and faster bandwidth to memory.
The usage of deep learning algorithms in industry has lead to the
development of powerful machine learning frameworks, such as
TensorFlow1 (developed by Google), providing APIs for
programming languages such as Python and C++, two popular
languages in the HEP community. As a result, more progress than
even has been made driving machine learning forward.

Deep learning

1 https://www.tensorflow.org/

Using TensorFlow and GPU resources in the Global
Pool

In order to use machine learning tools with Global Pool resources, the framework dependencies (i.e: TensorFlow, Keras, etc) need to be resolved first. CMS
works mostly with Red Hat based Operating Systems (6 and 7), but TensorFlow officially supports Ubuntu only, so installing it by hand is not necessarily an
easy task for a user.

To help with this, the CMS framework provides such dependencies via CVMFS, but its support is at the CPU-level only, since the integration with GPU
resources can get tricky due to potential conflicts with GPU library dependencies. For instance, different TensorFlow versions can require specific versions of
cuDNN (the Nvidia Deep Learning SDK) or the CUDA toolkit to work.

To overcome this issue on a wider scale, the OSG builds and maintains Singularity2 containers based on Ubuntu for TensorFlow with GPU support. But new
dependency trees arise: CUDA, CuDNN, GCC, etc. (See OSG oral presentation #49 at this conference for more details3).

The CMS Global Pool powered by HTCondor and GlideinWMS has full support for Singularity, so OSG images can be used with the infrastructure through
HTCondor in a transparent way.

Universe = vanilla

#... (request resources, define logfiles, etc)
Executable = tf_matmul_wrapper_cvmfs.sh
transfer_input_files = tf_matmul.py
request_gpus = 1
Requirements = HAS_SINGULARITY == True
+SingularityImage =
"/cvmfs/singularity.opensciencegrid.org/openscience
grid/tensorflow-gpu:latest"
Queue 1

Condor submit example for requesting GPU
resources with OSG TensorFlow images

1

2 http://singularity.lbl.gov/
3 E. Fajardo Hernandez et. al., "OSG and GPUs: A tale of two use cases", CHEP 18 Oral Presentation on Track 3, Contribution ID #49

Using TensorFlow and GPU resources in the Global Pool

https://www.tensorflow.org/
http://singularity.lbl.gov/

