
 Improving the Scheduling Efficiency of a
 Global Multi-core HTCondor Pool in CMS

B. Bockelman1, D. Davila Foyo2, K. Hurtado Anampa3. T. Ivanov4, F. Khan5, A. Kotobi6,

K. Larson5, J. Letts7, M. Mascheroni7, D. Mason5, A Perez-Calero Yzquierdo8

1Univ. of Nebraska-Lincoln (US), 2Aut. Univ. of Puebla (MX), 3Univ. of Notre Dame (US), 4Univ. of Sofia (BG),
5FNAL (US),6Univ. of Malaya (MY), 7UCSD (US), 8CIEMAT & PIC (ES)

Abstract
Scheduling multi-core workflows in a global
HTCondor pool is a multi-dimensional
problem whose solution depends on the
requirements of the job payloads, the
characteristics of available resources, and the
boundary conditions such as fair share and
prioritization imposed on the job matching to
resources. Within the context of a dedicated
task force, CMS has increased significantly the
scheduling efficiency of workflows in reusable
multi-core pilots by various improvements to
the limitations of the glideinWMS pilots,
accuracy of resource requests, efficiency and
speed of the HTCondor infrastructure, and
job matching algorithms.

Multi-Core Pool Scheduling
The CMS Submission Infrastructure (SI) group
is responsible for glideinWMS and HTCondor
operations in CMS as well as setting and
communicating our priorities to the respective
development teams.

The CMS Global Pool is at once a glideinWMS
instance and a HTCondor pool. As seen in
Figure 1, in response to demand for resources
from job schedulers (schedd’s), a glideinWMS
frontend requests a factory to submit multi-
core pilot jobs to Grid and Cloud sites world-
wide. These pilots instantiate HTCondor
startd’s that join a HTCondor pool. A
HTCondor Central Manager with multiple
Negotiators then matches these resources
(startd’s) to jobs on schedulers at CERN and
Fermilab, completing the circle.

Figure 1. Elements of glideinWMS and HTCondor pools in CMS.

Scheduling in this environment is challenging
firstly due to initial and boundary conditions
on the pilots. For example, there are delays
from the time the frontend requests a pilot to
the time that the pilot starts on the remote
resources. Pilot jobs also have a finite (typically
48h) lifetime and must be properly drained in
order to not kill payloads at the end of the
pilot life, as seen in Figure 2.

Figure 2. Evolution of multi-core pilot fragmentation and draining.

Secondly, pilots can become more fragmented
over time as lower core count jobs finish
asynchronously, making the matching of higher
core count jobs impossible, even if they are
from higher priority workflows.

Scheduling Efficiency
In the context of a dedicated task force
beginning in 2017, CMS made a targeted effort
to improve the CPU efficiency of CMS
workflows. CPU efficiency in the WLCG is
defined as the measured CPU time over the
logical CPU core count times wall clock time.
This CPU efficiency is completely factorable
in to a contr ibut ion f rom the p i lo t
infrastructure (scheduling efficiency) and from
the underlying payload job.

Figure 3. Improvement of the CPU scheduling efficiency over time.

As seen in Figure 3, in early 2017 the
scheduling efficiency in multi-core pilots was
quite poor (~85% on average) relative to
single-core pilots, (>95%). SI made a dedicated
effort in the second half of 2017 to improve
this situation, both by tuning the pilots and
also requesting and integrating improvements
in glideinWMS and HTCondor.

Legitimate Use Cases
There are several legitimate cases where CPU
is left idle, however. As seen in Figure 4,
overcommitment of RAM in pilots for high-
memory workflows is one legitimate use case.
CMS’ opportunistic use of CPU cores in the
high level trigger (HLT) farm is another, where
long-lived VM’s remained idle waiting for work.
CMS also leaves a certain number of CPU
cores (CAF) ready for urgent calibration work
at CERN during LHC data taking.

Figure 4. Sources of idle CPU cores in the CMS Global Pool.

SI sought to minimize the contributions to idle
CPU from other sources, such as pilot startup,
retirement, or poor occupancy.

Pilot Improvements
SI observed that during periods of bursty job
submission, as seen in Figure 5, the frequent
expansion and contraction of the Global Pool
often resulted in very poor (even as low as
50%) scheduling efficiency. We noted that
during these periods new pilots were starting
at sites long after the job pressure subsided.
This decoupling in time of job pressure from

resource availability was a major source of
CPU wastage.

The situation was improved partly by ceasing
this bursty submission pattern, but also by
improvements in glideinWMS [1] to remove
idle pilots in site batch queues after a tunable
amount of time. While this may cause some
churn in site batch queues, it mostly
eliminated this source of wastage.

Figure 5. Bursts of job submissions and draining effect on the Global Pool.

Retirement of glideins is necessary not only
because of job wall clock limits at sites, but
also to counter fragmentation of the pilots,
which can lead to priority inversions in
workflow matchmaking.

The length of the pilot retirement time (and
consequent CPU wastage) is driven by the
accuracy to which we know the job wall clock
time. Improvements in analysis job length
estimation [2] allowed us to shorten the
retirement time to 4h from 10h, improving
scheduling efficiency by several percent, and
allowing almost all jobs to complete within the
pilot lifetime.

HTCondor Improvements
Depth-wise filling of multi-core pilots was
made available from HTCondor version 8.7.5
and integrated in the Global Pool in May 2017.
Before that, it was possible for pilots to be
filled randomly or even breadth-wise, which
effectively maximized idle CPU in the pool. In
depth-wise filling, nearly full pilots are favored
for matches over sparsely-occupied glideins.

Conclusions
While the individual contributions of all of the
fixes we implemented are difficult to quantify,
the overall effect was to improve the
scheduling efficiency in multi-core pilots to be
comparable to single-core glideins, after
legitimate use cases such as over-committing
memory are taken into account. We typically
have over ~97% multi-core scheduling
efficiency in 2018, on par with single-core.
Remaining sources of inefficiency in the
submission infrastructure are largely
irreducible.

Related SI Work:

1. M. Mascheroni et al., “Recent developments in glideinWMS: minimizing resource wastages”, CHEP18 Poster #513.

2. T. Ivanov et al., “Improving efficiency of analysis jobs in CMS”, CHEP18 Oral Presentation #379.

3. K. Hurtado Ampara et al., “"Producing Madgraph5_aMC@NLO gridpacks and using TensorFlow GPU resources in the CMS
HTCondor Global Pool”, CHEP18 Poster #422.

4. A. Perez-Calero Yzquierdo et al., “Exploring GlideinWMS and HTCondor scalability frontiers for an expanding CMS Global
Pool”, CHEP18 Oral Presentation #438.

Contact Information: jletts@ucsd.edu

This work was partially supported by the U.S. Department of Energy and the National Science
Foundation.

Factory

Frontend

schedd

Grid,
Cloud

Negotiator

glideinWMS

HTCondor

CPU

time

wastage

startdjob

job job

job job

 job

 job

 job

 job

job

job

job

job

job

job

job

 job

job

job

retire

mailto:jletts@ucsd.edu

