The Cherenkov Telescope Array production system for data-processing and Monte Carlo simulation

Luisa Arrabito1
K. Bernloehr2, J. Bregeon1, P. Cumani3, T. Hassan3, A. Haupt4, G. Maier4, T. Michael5, A. Moralejo3, N. Neyroud6
for the CTA Consortium
F. Stagni7, A. Tsaregorodtsev8 for the DIRAC Consortium

1LUPM CNRS-IN2P3 France
2MPIK Germany
3IFAE Spain
4DESY Germany
5CEA Saclay France
6LAPP CNRS-IN2P3 France
7CERN
8CPPM CNRS-IN2P3 France

July 9th-13th 2018, Sofia
23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP)
Outlook

• CTA overview
• Production setup for MC simulations
• Tests on cloud resources integration
• Data driven workflow management
• Conclusions
CTA (Cherenkov Telescope Array)

- Next generation IACT, VHE gamma-rays Observatory
- Worldwide collaboration, 1500 members
- Scientific goals
 - Cosmic ray origins, High Energy astrophysical phenomena, fundamental physics and cosmology
- Two Cherenkov telescope arrays
 - Northern Site (La Palma, Spain): 4 large size, 15 mid-size telescopes
 - Southern site (Paranal, Chile): 4 large size, 25 mid-size, 70 small size telescopes

- Project schedule
 - Construction and deployment: 2019-2025
 - Science operations: from 2022, for ~30 years
CTA computing model at a glance

- Distributed computing infrastructure
 - 4 DC sharing workload
- CTAO-Science Data Management Center
CTA data volume

- **Raw-data rate**
 - CTA South: 5.4 GB/s
 - CTA North: 3.2 GB/s
 - 15% of observation time per year

- **Raw-data volume**
 - 40 PB/year
 - 4 PB/year after reduction

- **Total data-volume**
 - 27 PB/year (including calibrations, reduced data and all replicas)
Current computing model for MC simulations

- Use EGI grid resources (CTA Virtual Organization)
 - ~20 sites in Europe
 - 6 sites provide in total 4 PB
- MC production jobs run at all sites
 - Output data are stored at 6 SEs (1 distributed replica)
- MC analysis jobs run at sites with good connectivity to SEs
- Users jobs also running in parallel

Grid sites supporting CTA Virtual Organization
Production setup

• Using DIRAC for Workload and Data Management
 – Workload Management System
 • Optimization of the computing resources usage by an efficient scheduling of the computing tasks
 • Resource integration (CREAM, ARC, Cloud, HPC, standalone clusters)
 – Transformation System
 • Running multi-steps data-processing workflows in a automatized way
 – Data Management System
 • All data operations (transfers, replication, removal, etc.-
 • File Catalog: replica and metadata

• CVMFS used to easily manage sw installation and access by distributed jobs
Monte Carlo campaigns during past years

- MC Campaigns to assess CTA design since 2013
 - CTA site selection, telescope layout, Instrument Response Functions
- Resources used in 2018
 - 130 M HS06 CPU hours
 - 5 PB transferred data (3.4 PB currently on disk/tape)
 - 28 M files registered in the catalog

Running jobs in 2018

- 9k jobs

Transferred data by destination in 2018

Max: 5.09, Min: 0.00, Average: 2.73, Current: 5.09
Tests on cloud resources integration

- Since last year, testing the integration of cloud resources in the CTA production system
- Using VMDIRAC module for transparent integration
 - Clouds are just seen as additional sites
 - Jobs behave as standard DIRAC grid jobs
- Cloud resources used
 - Private: 2 sites of the France Grilles Federated Cloud (CC-IN2P3, LUPM)
 - Commercial: 3 companies in the context of the HNSciCloud project
- Functional tests in 2017
- First scalability tests in 2018
Tests on cloud resources integration

- Running standard CTA jobs
 - MC simulation
 - Analysis jobs accessing Input Data at remote grid SEs
 - 1 job/VCPU -> 1 VM with 4 VCPUs takes 4 jobs
- Functional tests at LUPM and CC-IN2P3 (OpenStack) ✓ Successfull
 - Up to 50 VMs available at each site
- First scalability tests on 1 commercial cloud (OpenStack) ✓ Successfull
 - Up to 250 VMs with flavour: 4 VCPUs, 8 GB RAM
 - Failures due to ‘small’ RAM VMs
 - Up to 60 VMs but with larger RAM (4 VCPUs, 32 GB RAM)
 - VM size not completely customizable
- No problem accessing remote Input Data
 - CPU efficiency > 90%
Data driven Workflow Management

- CTA workflow management heavily rely on the DIRAC Transformation System
 - Automated Tasks, workhorse for MC production and analysis
 - A **Transformation** is an input *data filter + a recipe* to create jobs
 - Fully data-driven: jobs are created as soon as data with required properties are registered into the file catalog
Data driven Workflow Management

- Transformations manually created and monitored one by one
 - Need further automatization
 - Development started of a new light high-level system (called Production System)

- Production System architecture
 - As any other DIRAC System (DB, Service, Agents, Client)
Data driven Workflow Management

• Production System
 – Production: set of ‘linked transformations’
 • E.g. 2 transformations t1, t2 are ‘linked’ if:
 – InputQuery2 logically intersects OutputQuery1
 • Enhancement of the transformation definition to characterise
 the inputs/outputs of a transformation through meta-queries
 – Automatic transformation instantiation based on the production
 definition
 – Support multiple workflows schemes (sequential, split, merge)
 – Prototype implementation done early 2018
 – Aim to be a general system used by other communities
 • On-going discussion about design choices in an open forum
Conclusions

• A production setup, based on DIRAC, used since 7 years for Monte Carlo simulations and analysis
• Cloud resource integration successfully tested
• Most likely HPC and GPUs resources will be integrated in future (as use-cases appear)
• Prototype implementation of a high-level workflow management system
• We will have to ensure the integration of the production setup with the other CTA systems (e.g. Archive System)