

The Cherenkov Telescope Array production system for data-processing and Monte Carlo simulation

#### Luisa Arrabito<sup>1</sup>

K. Bernloehr<sup>2</sup>, J. Bregeon<sup>1</sup>, P. Cumani<sup>3</sup>, T. Hassan<sup>3</sup>, A. Haupt<sup>4</sup>, G. Maier<sup>4</sup>, T. Michael<sup>5</sup>, A. Moralejo<sup>3</sup>, N. Neyroud<sup>6</sup> for the CTA Consortium F. Stagni<sup>7</sup>, A. Tsaregorodtsev<sup>8</sup> for the DIRAC Consortium

<sup>1</sup>LUPM CNRS-IN2P3 France

<sup>2</sup>MPIK Germany

<sup>3</sup>IFAE Spain

<sup>4</sup>DESY Germany

<sup>5</sup>CEA Saclay France

<sup>6</sup>LAPP CNRS-IN2P3 France

MCERN

8CPPM CNRS-IN2P3 France

July 9<sup>th</sup>-13<sup>th</sup> 2018, Sofia 23rd International Conference on Computing in High Energy and Nuclear Physics (CHEP)

### **Outlook**



- CTA overview
- Production setup for MC simulations
- Tests on cloud resources integration
- Data driven workflow management
- Conclusions

# **CTA (Cherenkov Telescope Array)**



- Next generation IACT, VHE gammarays Observatory
- Worldwide collaboration, 1500 members
- Scientific goals
  - Cosmic ray origins, High Energy astrophysical phenomena, fundamental physics and cosmology

- Two Cherenkov telescope arrays
  - Northern Site (La Palma, Spain): 4 large size, 15 mid-size telescopes
  - Southern site (Paranal, Chile): 4 large
    size, 25 mid-size, 70 small size telescopes
- Project schedule
  - Construction and deployment: 2019-2025
  - Science operations: from 2022, for ~30 years



## CTA computing model at a glance





### **CTA** data volume



#### Raw-data rate

CTA South: 5.4 GB/s

CTA North: 3.2 GB/s

15% of observation time per year

- Raw-data volume
  - 40 PB/year
  - 4 PB/year after reduction
- Total data-volume
  - 27 PB/year (including calibrations, reduced data and all replicas)



# Current computing model for MC simulations



- Use EGI grid resources (CTA Virtual Organization)
  - − ~ 20 sites in Europe
  - 6 sites provide in total 4 PB
- MC production jobs run at all sites
  - Output data are stored at 6
    SEs (1 distributed replica)
- MC analysis jobs run at sites with good connectivity to SEs
- Users jobs also running in parallel

### Grid sites supporting CTA Virtual Organization



## **Production setup**



- Using DIRAC for Workload and Data Management
  - Workload Management System
    - Optimization of the computing resources usage by an efficient scheduling of the computing tasks
    - Resource integration (CREAM, ARC, Cloud, HPC, standalone clusters)
  - Transformation System
    - Running multi-steps data-processing workflows in a automatized way
  - Data Management System
    - All data operations (transfers, replication, removal, etc.-
    - File Catalog: replica and metadata
- CVMFS used to easily manage sw installation and access by distributed jobs

# Monte Carlo campaigns during past years



- MC Campaigns to assess CTA design since 2013
  - CTA site selection, telescope layout, Instrument Response Functions
- Resources used in 2018
  - 130 M HS06 CPU hours
  - 5 PB transferred data (3.4 PB currently on disk/tape)
  - 28 M files registered in the catalog





## Tests on cloud resources integration



- Since last year, testing the integration of cloud resources in the CTA production system
- Using VMDIRAC module for transparent integration
  - Clouds are just seen as additional sites
  - Jobs behave as standard DIRAC grid jobs
- Cloud resources used
  - Private: 2 sites of the France Grilles Federated Cloud (CC-IN2P3, LUPM)
  - Commercial: 3 companies in the context of the HNSciCloud project
- Functional tests in 2017
- First scalability tests in 2018





## Tests on cloud resources integration



- Running standard CTA jobs
  - MC simulation
  - Analysis jobs accessing Input Data at remote grid SEs
  - 1 job/VCPU -> 1 VM with 4 VCPUs takes 4 jobs
- Functional tests at LUPM and CC-IN2P3 (OpenStack) ✓ Successfull
  - Up to 50 VMs available at each site
- First scalability tests on 1 commercial cloud (OpenStack) ✓ Successfull
  - Up to 250 VMs with flavour: 4 VCPUs, 8 GB RAM
    - Failures due to 'small' RAM VMs
  - Up to 60 VMs but with larger RAM (4 VCPUs, 32 GB RAM)
  - VM size not completely customizable
- No problem accessing remote Input Data
  - CPU efficiency > 90%



### Analysis jobs on a commercial cloud



# **Data driven Workflow Management**



- CTA workflow management heavily rely on the DIRAC Transformation System
  - Automated Tasks, workhorse for MC production and analysis
  - A Transformation is an input data filter + a recipe to create jobs
  - Fully data-driven: jobs are created as soon as data with required properties are registered into the file catalog



# **Data driven Workflow Management**



- Transformations manually created and monitored one by one
  - Need further automatization
  - Development started of a new light high-level system (called Production System)
- Production System architecture
  - As any other DIRAC System (DB, Service, Agents, Client)



# **Data driven Workflow Management**



- Production System
  - Production: set of 'linked transformations'
    - E.g. 2 transformations t1, t2 are 'linked' if:
      - InputQuery2 logically intersects OutputQuery1
    - Enhancement of the transformation definition to characterise the inputs/outputs of a transformation through meta-queries
  - Automatic transformation instantiation based on the production definition
  - Support multiple workflows schemes (sequential, split, merge)
  - Prototype implementation done early 2018
  - Aim to be a general system used by other communities
    - On-going discussion about design choices in an open forum

### **Conclusions**



- A production setup, based on DIRAC, used since 7 years for Monte Carlo simulations and analysis
- Cloud resource integration successfully tested
- Most likely HPC and GPUs resources will be integrated in future (as use-cases appear)
- Prototype implementation of a high-level workflow management system
- We will have to ensure the integration of the production setup with the other CTA systems (e.g. Archive System)