# Limits of the HTCondor Transfer System

Edgar Fajardo<sup>1</sup>, Frank Wuerthwein<sup>1</sup>, Richard Jones<sup>2</sup>, Sandy Philpott<sup>3</sup> and Kurt Strosahl<sup>3</sup>

<sup>1</sup>University of California San Diego, <sup>2</sup>University of Connecticut, <sup>3</sup>Jefferson Laboratory



#### Motivation

GLUEX experiment wanted to know if they could use the HTCondor Transfer File mechanism to bring the output of their jobs back.

### **Expected Parameters**

| Parameter               | Value     |
|-------------------------|-----------|
| # Parallel running jobs | 20000     |
| Output sandbox          | 10-100 MB |
| Input Sandbox           | 1-10 MB   |
| Job length              | 8h - 9h   |

$$O(n, l, s) = \frac{nJobs * size}{length} = \frac{20000 * 90}{9 * 3600} \approx 55.5 \frac{\text{MB}}{\text{sec}}$$

# Predicted Output rate



#### Conclusions

- •At the proposed rates GLUEX will efficiently use its resources bringing their output through the HTCondor transfer mechanism
- •It also holds true if GLUEX double the rates (either on shorter jobs or twice as much output size).
- •Latency greatly influences the efficiency of the HTCondor transfer mechanism but it can mitigated by tuning the submit host.

#### Disclaimer

•All tests were done with HTCondor 8.4. New stable release 8.6 is available but the output file transfer mechanism has not been greatly modified.

#### Test SubmitPoint Specs

| Hardware     | Spec                |
|--------------|---------------------|
| Memory       | 128 GB              |
| Network Card | 10 Gbit Full duplex |
| Core count   | 40                  |
| Disk Setup   | ssd + raid6         |

#### HTCondor can saturate the network



| Value       |
|-------------|
| 4000        |
| 250 MB      |
| 30 min      |
| ~555.5 MB/s |
| ~800 MB/s   |
|             |

The discrepancy is due to retries. HTCondor does not do partial file transfers.

## Does latency affect transfer and CPU efficiency?





- The red line is at two times the expected rate.
- The yellow line is at the expected rate.

The green line is after kernel changes









