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Disclaimer

● This is a strategy talk
● All technicalities are left in backup slides

○ happy to answer questions later
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DIRAC: the interware
● A software framework for distributed computing
● A complete solution to one (or more) user community
● Builds a layer between users and resources 

● Started as an LHCb project, 
experiment-agnostic in 2009

● Developed by communities, for 
communities

○ Open source (GPL3+), GitHub hosted, 
python 2.7

○ No dedicated funding for the development 
of the “Vanilla” project

○ Publicly documented, active assistance 
forum, yearly users workshops, open 
developers meetings

○ 4 FTE as core developers, a dozen 
contributing developers

● The DIRAC consortium as 
representing body
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https://github.com/DIRACGrid
http://dirac.readthedocs.io/en/latest/index.html
https://groups.google.com/forum/#!forum/diracgrid-forum
https://groups.google.com/forum/#!forum/diracgrid-forum
https://indico.cern.ch/event/477578/overview
http://indico.cern.ch/category/4205/


Users/communities/VOs

A framework shared by multiple 
experiments/projects, both inside HEP, 

astronomy, and life science

Experiment agnostic
Extensible

Flexible
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LHCb and DIRAC

● LHCb uses DIRAC for managing all distributed computing activities
○ Workload, Data, Productions, etc...

● LHCb analysts use Ganga (which interfaces to DIRAC) or DIRAC APIs 
directly

LHCb is the experiment that stresses DIRAC functionalities the most
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https://ganga.web.cern.ch/ganga/


LHCb DIRAC
Activities overview

pledge

average

6



The LHCb upgrade

● Computing model being defined
● DIRAC needs to be able to implement it, and sustain an increased load
● Resources “crisis” → grab what you can!
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S.Roiser

“Towards a 

computing model 

for the LHCb 

Run3 upgrade”

T3, tomorrow



Exploiting computing 
resources

Pilots are the 
“federators”

Send them
as “pilot jobs” (via a CE)

Or just Run them!
e.g. as part of the contextualization of a (V)M

few “generations” of pilots
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A.McNab

“The LHCb 

DIRAC 

Containers”

T7, tomorrow

https://indico.cern.ch/event/505613/contributions/2227927/


Running the service: 
LHCb DIRAC Pillars

● With DIRAC, LHCb operates a service
○ need to keep a running system working, with 

continuity
● We don’t see the need for a revolution

○ The system will keep evolving gradually
■ in a backward compatible way

○ Introducing new/better/faster stuff
■ Users should not notice about (most of) them

● Usability for the users
● Scalability for the services is necessary
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Scalability is about

1. Traffic growth
how many messages

→ DIRAC architecture and framework

2. Dataset growth
how much data

→ RDBMS, NoSQL...

3. Maintainability
system and code

→ Software engineering practices
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Traffic growth:
DIRAC architecture

we’re good
more or less

DIRAC is a (micro)service architecture
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...so yeah, no revolutions 
ahead

...still… things to do…

Horizontal and vertical 
extensibility



Traffic growth:
DIRAC Framework
The DIRAC Core and Framework has been developed +10 years ago:

● logging
● DISET

○ sockets + SSL + DEncode
● ...

and now lots of stuff in there is available/maintained elsewhere
○ is it worth/better than what we have now?

● partly, yes!
● So, we are moving/adapting

○ all under-the-hood
■ ask for details

○ →reducing the codebase
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Traffic growth:
enter the orchestrators

● HW scalability: more (micro)services
○ Supposing a good load balancer, this is not necessarily 

bad
■ self-tuning system?

○ Enter in the beautiful world of the orchestrators...
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DIRAC on 
Mesos/Kubernetes? 
Almost, but...



Traffic growth:
Message Queues

Important topic, for which there’s a poster!
#215 by W. Krzemien
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Dataset growth:
Databases

● RDBMS:
○ MySQL OK
○ Oracle (Bookkeeping) OK

● NoSQL:
○ ElasticSearch (in production)

■ Other options tested, converged to ES

● Object and block storages
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Maintainability:
Python 3
● … yes, one day

○ not (really) tomorrow, but we started
● we have been polishing the code for long 

time now
○ so, 2to3 (modernize) won’t explode

● wide, deep, testing is fundamental
○ a testing and certification process is in place

→ but we need our (several) dependencies to 
move first!
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User analysis

● Ganga will be kept

● Centralized productions for WG analysis
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Summary

● LHCb uses DIRAC for all its distributed computing 
activities, and will keep using it for Run3 and beyond
○ DIRAC users and developers from other communities, LHCb the one 

that stress its capabilities the most
● Focus on usability, flexibility, scalability

○ Already flexible
○ Scalability: traffic and dataset growth, and maintainability

● No need for a revolution → constant evolution
○ strategy defined few years ago
○ several developments started, some completed, others we’d like to 

start
○ what LHCb is doing and will for DIRAC will benefit all other 

communities too.
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?
● Web: http://diracgrid.org

● Docs: http://dirac.readthedocs.io
● Forum: https://groups.google.com/forum/#!forum/diracgrid-forum
● Code, wiki, and issues (DIRAC): https://github.com/DIRACGrid/

● Code (LHCb DIRAC): https://gitlab.cern.ch/lhcb-dirac/
● 8th DIRAC Users Workshop: https://indico.cern.ch/event/676817/

● Devs’ meetings: https://indico.cern.ch/category/4205/

Questions/comments
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http://diracgrid.org
http://dirac.readthedocs.io
https://groups.google.com/forum/#!forum/diracgrid-forum
https://github.com/DIRACGrid/
https://gitlab.cern.ch/lhcb-dirac/
https://indico.cern.ch/event/676817/
https://indico.cern.ch/category/4205/


BACKUPS
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Reminders

● DIRAC is a fully open source project
○ Extended in LHCb

● Used by 40+ communities
● 220K+130K lines of python 2

■ Plus some .sh, .js
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Experiment agnostic, 
and extensibility
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“Horizontal” 
extensibility

-
For specific requirements

DIRAC

WebAppDIRAC COMDIRACVMDIRACRESTDIRAC

Externals

DIRAC

A DIRAC release is 
composed by all the 

projects (strong 
dependency)

Each project is 
independently 

versioned

WebAppDIRAC

VO
DIRAC

VO
WebAppDIRAC“Vertical” 

extensibility
-

Community driven

Pilot
Core 

project



Concezio
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Resources

How many resources will we need?
● Playing with numbers

○ hard to predict, factors in differences.
● But, however we put it, LHCb in Run3 will 

require way more computing, disk, and tape 
resources than what we have now.
○ the approach from funding agencies need to change

● Non-pledged, opportunistic resources help, 
but won’t save us
○ and anyway they are only computing resources
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Encoding/decoding

What if we change 
DEncode? 
Test: 178k files and their 
metadata  
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DIRAC pilots

1. Install a DIRAC client
○ together with dependencies

■ the “container” is shipped → a “container” is not necessarily an image 

2. Self-discover WN capabilities
○ Including CPU power and capabilities

■ Using DB12 or MJF
■ And #processors

○ And memory 
3. Use a “JobAgent” to match the capabilities of the WN 

with the requirements of the waiting jobs.
4. Send monitoring info

○ A list of messages like 
■ "I've booted up" …
■ "I found the DIRAC pilot ok" ... 
■ "I'm about to shutdown"... 

○ Self-upload their own logs before shutting down
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Traffic growth:
DIRAC Core and Framework

The DIRAC Core and Framework has been developed 
~10 years ago, and now lots of stuff in the DIRAC 
framework is available/maintained elsewhere

○ this is already technology
■ is it worth/better than what we have now?

● partly, yes!
■ gLogger → python logging [DONE]

● and plugins on the shelf!
■ pyGSI → M2Crypto [IN PROGRESS… 

STOPPED?]
■ dips → https [STARTED]

● see later
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DIPS → HTTPS
● Migrate from DISET to HTTPS

○ Ready for python 3
○ Standard way to call a server
○ Easy to understand
○ Big community behind

● Progressively remove DISET
○ Transparency & Backward and forward compatibility
○ Keep DIRAC internal functions (Monitoring, proxy, 

authentication/authorization, … )
○ Prepare work for complete integration with Tornado

More info
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https://docs.google.com/presentation/d/1t0hVpceXgV8W8R0ef5raMK3sUgXWnKdCmJUrG_5LsT4/edit#slide=id.g3381d8f267_0_0


Requirements on Traffic

Assumption: 
increase of one order of magnitude

● Services: ~OK if lots more services
○ → that “~” is meaningful!

● Agents: KO
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Limitations of agents

● Polling&Pulling
● Not real time executors

For today’s implementation:
● Parallelization is hard
● Multiple instances may not be possible

○ Lots of work anyway

→ NOT scalable
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Scalability in mind

● HW scalability: more (micro)services
○ Supposing a good load balancer, this is not 

necessarily bad
■ self-tuning system?

● SW scalability: 
○ probably need to change/replace (big?) part of 

DISET
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Message Queues

● MQs are in DIRAC
○ For failover purposes
○ Consumers as DIRAC components → RFC

● Push, not pull
● We can replace several agents with 

Consumers
○ and also (especially?) executors
○ Agents, executors, consumers as a single 

component?
○ … what about trying with this guy?

■ http://python-rq.org/
■ a nice project...
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https://github.com/DIRACGrid/DIRAC/wiki/RabbitMQ
http://python-rq.org/


Dataset growth:
Object, block storage

Advocated as “scalable solutions”

Use cases:
● Logs
● SandBox
which are static and unstructured data

Need a DIRAC SE on top of an object storage, e.g., CEPH, 
or OpenStack Swift

...but again, these are mostly Dev-Ops issues.
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Timeline
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partial!


