
LHCb and DIRAC
strategy towards

the LHCb upgrade

Federico Stagni
on behalf of the LHCb distributed computing team

CHEP 2018, 9-13 July 2018, Sofia, Bulgaria

Disclaimer

● This is a strategy talk
● All technicalities are left in backup slides

○ happy to answer questions later

2

DIRAC: the interware
● A software framework for distributed computing
● A complete solution to one (or more) user community
● Builds a layer between users and resources

● Started as an LHCb project,
experiment-agnostic in 2009

● Developed by communities, for
communities

○ Open source (GPL3+), GitHub hosted,
python 2.7

○ No dedicated funding for the development
of the “Vanilla” project

○ Publicly documented, active assistance
forum, yearly users workshops, open
developers meetings

○ 4 FTE as core developers, a dozen
contributing developers

● The DIRAC consortium as
representing body

3

https://github.com/DIRACGrid
http://dirac.readthedocs.io/en/latest/index.html
https://groups.google.com/forum/#!forum/diracgrid-forum
https://groups.google.com/forum/#!forum/diracgrid-forum
https://indico.cern.ch/event/477578/overview
http://indico.cern.ch/category/4205/

Users/communities/VOs

A framework shared by multiple
experiments/projects, both inside HEP,

astronomy, and life science

Experiment agnostic
Extensible

Flexible

4

LHCb and DIRAC

● LHCb uses DIRAC for managing all distributed computing activities
○ Workload, Data, Productions, etc...

● LHCb analysts use Ganga (which interfaces to DIRAC) or DIRAC APIs
directly

LHCb is the experiment that stresses DIRAC functionalities the most

5

https://ganga.web.cern.ch/ganga/

LHCb DIRAC
Activities overview

pledge

average

6

The LHCb upgrade

● Computing model being defined
● DIRAC needs to be able to implement it, and sustain an increased load
● Resources “crisis” → grab what you can!

7

S.Roiser

“Towards a

computing model

for the LHCb

Run3 upgrade”

T3, tomorrow

Exploiting computing
resources

Pilots are the
“federators”

Send them
as “pilot jobs” (via a CE)

Or just Run them!
e.g. as part of the contextualization of a (V)M

few “generations” of pilots

8

A.McNab

“The LHCb

DIRAC

Containers”

T7, tomorrow

https://indico.cern.ch/event/505613/contributions/2227927/

Running the service:
LHCb DIRAC Pillars

● With DIRAC, LHCb operates a service
○ need to keep a running system working, with

continuity
● We don’t see the need for a revolution

○ The system will keep evolving gradually
■ in a backward compatible way

○ Introducing new/better/faster stuff
■ Users should not notice about (most of) them

● Usability for the users
● Scalability for the services is necessary

9

Scalability is about

1. Traffic growth
how many messages

→ DIRAC architecture and framework

2. Dataset growth
how much data

→ RDBMS, NoSQL...

3. Maintainability
system and code

→ Software engineering practices

10

Traffic growth:
DIRAC architecture

we’re good
more or less

DIRAC is a (micro)service architecture

11

...so yeah, no revolutions
ahead

...still… things to do…

Horizontal and vertical
extensibility

Traffic growth:
DIRAC Framework
The DIRAC Core and Framework has been developed +10 years ago:

● logging
● DISET

○ sockets + SSL + DEncode
● ...

and now lots of stuff in there is available/maintained elsewhere
○ is it worth/better than what we have now?

● partly, yes!
● So, we are moving/adapting

○ all under-the-hood
■ ask for details

○ →reducing the codebase

12

Traffic growth:
enter the orchestrators

● HW scalability: more (micro)services
○ Supposing a good load balancer, this is not necessarily

bad
■ self-tuning system?

○ Enter in the beautiful world of the orchestrators...

13

DIRAC on
Mesos/Kubernetes?
Almost, but...

Traffic growth:
Message Queues

Important topic, for which there’s a poster!
#215 by W. Krzemien

14

Dataset growth:
Databases

● RDBMS:
○ MySQL OK
○ Oracle (Bookkeeping) OK

● NoSQL:
○ ElasticSearch (in production)

■ Other options tested, converged to ES

● Object and block storages

15

Maintainability:
Python 3
● … yes, one day

○ not (really) tomorrow, but we started
● we have been polishing the code for long

time now
○ so, 2to3 (modernize) won’t explode

● wide, deep, testing is fundamental
○ a testing and certification process is in place

→ but we need our (several) dependencies to
move first!

16

User analysis

● Ganga will be kept

● Centralized productions for WG analysis

17

Summary

● LHCb uses DIRAC for all its distributed computing
activities, and will keep using it for Run3 and beyond
○ DIRAC users and developers from other communities, LHCb the one

that stress its capabilities the most
● Focus on usability, flexibility, scalability

○ Already flexible
○ Scalability: traffic and dataset growth, and maintainability

● No need for a revolution → constant evolution
○ strategy defined few years ago
○ several developments started, some completed, others we’d like to

start
○ what LHCb is doing and will for DIRAC will benefit all other

communities too.

18

?
● Web: http://diracgrid.org

● Docs: http://dirac.readthedocs.io
● Forum: https://groups.google.com/forum/#!forum/diracgrid-forum
● Code, wiki, and issues (DIRAC): https://github.com/DIRACGrid/

● Code (LHCb DIRAC): https://gitlab.cern.ch/lhcb-dirac/
● 8th DIRAC Users Workshop: https://indico.cern.ch/event/676817/

● Devs’ meetings: https://indico.cern.ch/category/4205/

Questions/comments

19

http://diracgrid.org
http://dirac.readthedocs.io
https://groups.google.com/forum/#!forum/diracgrid-forum
https://github.com/DIRACGrid/
https://gitlab.cern.ch/lhcb-dirac/
https://indico.cern.ch/event/676817/
https://indico.cern.ch/category/4205/

BACKUPS
20

Reminders

● DIRAC is a fully open source project
○ Extended in LHCb

● Used by 40+ communities
● 220K+130K lines of python 2

■ Plus some .sh, .js

21

Experiment agnostic,
and extensibility

22

“Horizontal”
extensibility

-
For specific requirements

DIRAC

WebAppDIRAC COMDIRACVMDIRACRESTDIRAC

Externals

DIRAC

A DIRAC release is
composed by all the

projects (strong
dependency)

Each project is
independently

versioned

WebAppDIRAC

VO
DIRAC

VO
WebAppDIRAC“Vertical”

extensibility
-

Community driven

Pilot
Core

project

Concezio

23

Resources

How many resources will we need?
● Playing with numbers

○ hard to predict, factors in differences.
● But, however we put it, LHCb in Run3 will

require way more computing, disk, and tape
resources than what we have now.
○ the approach from funding agencies need to change

● Non-pledged, opportunistic resources help,
but won’t save us
○ and anyway they are only computing resources

24

Encoding/decoding

What if we change
DEncode?
Test: 178k files and their
metadata

25

DIRAC pilots

1. Install a DIRAC client
○ together with dependencies

■ the “container” is shipped → a “container” is not necessarily an image

2. Self-discover WN capabilities
○ Including CPU power and capabilities

■ Using DB12 or MJF
■ And #processors

○ And memory
3. Use a “JobAgent” to match the capabilities of the WN

with the requirements of the waiting jobs.
4. Send monitoring info

○ A list of messages like
■ "I've booted up" …
■ "I found the DIRAC pilot ok" ...
■ "I'm about to shutdown"...

○ Self-upload their own logs before shutting down
26

Traffic growth:
DIRAC Core and Framework

The DIRAC Core and Framework has been developed
~10 years ago, and now lots of stuff in the DIRAC
framework is available/maintained elsewhere

○ this is already technology
■ is it worth/better than what we have now?

● partly, yes!
■ gLogger → python logging [DONE]

● and plugins on the shelf!
■ pyGSI → M2Crypto [IN PROGRESS…

STOPPED?]
■ dips → https [STARTED]

● see later
27

DIPS → HTTPS
● Migrate from DISET to HTTPS

○ Ready for python 3
○ Standard way to call a server
○ Easy to understand
○ Big community behind

● Progressively remove DISET
○ Transparency & Backward and forward compatibility
○ Keep DIRAC internal functions (Monitoring, proxy,

authentication/authorization, …)
○ Prepare work for complete integration with Tornado

More info
28

https://docs.google.com/presentation/d/1t0hVpceXgV8W8R0ef5raMK3sUgXWnKdCmJUrG_5LsT4/edit#slide=id.g3381d8f267_0_0

Requirements on Traffic

Assumption:
increase of one order of magnitude

● Services: ~OK if lots more services
○ → that “~” is meaningful!

● Agents: KO

29

Limitations of agents

● Polling&Pulling
● Not real time executors

For today’s implementation:
● Parallelization is hard
● Multiple instances may not be possible

○ Lots of work anyway

→ NOT scalable
30

Scalability in mind

● HW scalability: more (micro)services
○ Supposing a good load balancer, this is not

necessarily bad
■ self-tuning system?

● SW scalability:
○ probably need to change/replace (big?) part of

DISET

31

Message Queues

● MQs are in DIRAC
○ For failover purposes
○ Consumers as DIRAC components → RFC

● Push, not pull
● We can replace several agents with

Consumers
○ and also (especially?) executors
○ Agents, executors, consumers as a single

component?
○ … what about trying with this guy?

■ http://python-rq.org/
■ a nice project...

32

https://github.com/DIRACGrid/DIRAC/wiki/RabbitMQ
http://python-rq.org/

Dataset growth:
Object, block storage

Advocated as “scalable solutions”

Use cases:
● Logs
● SandBox
which are static and unstructured data

Need a DIRAC SE on top of an object storage, e.g., CEPH,
or OpenStack Swift

...but again, these are mostly Dev-Ops issues.
33

Timeline

34

16
Q4

17
Q1

17
Q2

17
Q3

17
Q4

18
Q1

18
Q2

18
Q3

18
Q4

19
Q1

19
Q2

19
Q3

19
Q4

20
Q1

20
Q2

20
Q3

20
Q4

No-SQL
integrat. X X

MQs
integrat. X X

New
logging X
Python
3 plans X X

High
availab. X

partial!

