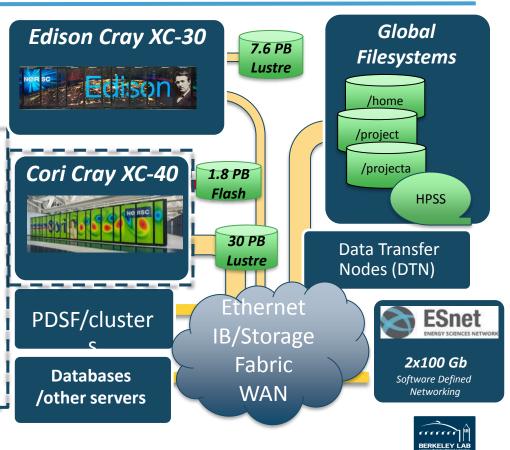

production HEP workflows on **Supercomputers** at NERSC July 9th 2018

Jan Balewski, <u>Wahid Bhimji</u>, Shane Cannon, Lisa Gerhardt, Rei Lee, Mustafa Mustafa and others @NERSC Berkeley Lab (LBNL)

Outline

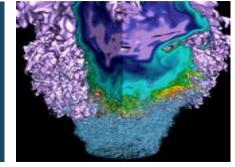
- Introduction to NERSC
- HEP workflow components:
 - Challenges on HPC; Approaches; NERSC technologies
- Some recent Experimental-HEP@NERSC workflow highlights:
 - Achievements; Approaches; Observations from user-support perspective
- Some recent technology developments:
 - DVFMS; Cori Networking; SPIN
- Future directions for NERSC:
 - NERSC-9; Storage; Workflows

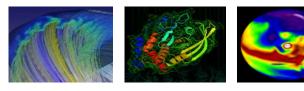
NERSC

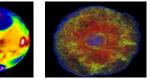

Mission HPC center for US Dept. of Energy Office of Science:

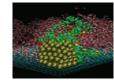
>7000 users; 100s of projects; diverse sciences

Cori: 31.4 PF Peak –#10 in Top500

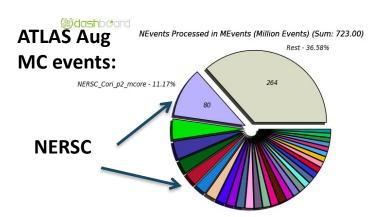

- 2388 Haswell 32-core 2.3 GHz; 128 GB
- 9668 KNL XeonPhi 68-core 1.4 GHz 4 hardware threads; AVX-512; 16 GB MCDRAM, 96 GB DDR4
- Cray Aries high-speed "dragonfly" interconnect
- 28 PB Lustre FS: 700 GB/s peak
- 1.8 PB Flash Burst Buffer: 1.7 TB/s



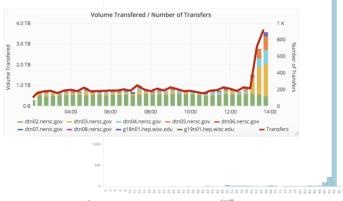

Workflow Component	Possible Issues	Approaches and Tech @ NERSC
Software: • Base OS • Experiment	Cray Linux No fuse for cvmfs Shared filesystems	Containers: Shifter CVMFS with Cray DFS -> 'DVFMS' Read-only /global/common filesystem
IO Bulk data Small files 	IOPS and metadata on shared Lustre filesystem	Lustre DNE on Cori Burst Buffer Shifter Per-node-cache
Databases/ Services	Limited server capacity or access	Remote access; Read-only copy (shifter); On-site (<u>SQL,MongoDB</u>)/ <u>SPIN</u> ;
Workflow:Job submissionOrchestration	Queue policies Server access	Scripts on Login/Workflow Nodes/SPIN SLURM (<u>flexible queues</u>) Grid services; 'Bosco (ssh)' SchedMD
Data Transfer • Scheduled • In-Job	Compute nodes on separate High- Speed Network	Scheduled: Data Transfer Nodes (DTN) In Job: 'SDN'
ENERGY Office of Science	4	BERKELEY LAB


Some production runs from last year and observations

Integration

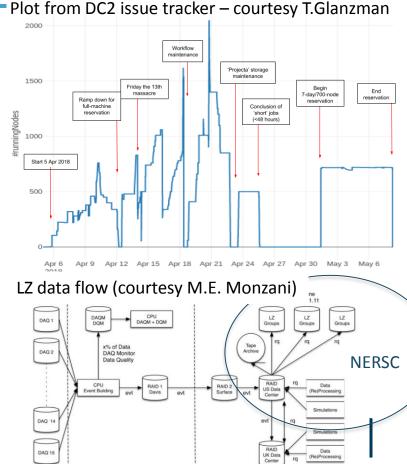


- ATLAS: Mostly MC production
 - ATLAS submission account was a top 3 NERSC
 "user" in 2017 and NERSC a top ATLAS MC producer
 - Pilots sub from login/workflow nodes (now using 'Harvester'); jobs with various size/ times avoid Qs


CMS: Many workflows

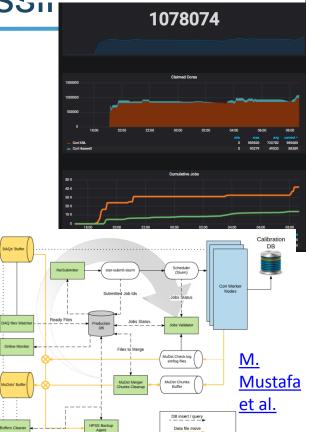
- Remote reading of pileup files from Fermilab: helped drive Cori node external networking – but still saw some residual connection timeouts
- Copied pileup to NERSC (via DTNs/rucio). Local read has good CPU efficiency so running like that but still will explore remote read further
- Both also using/stressing SPIN for frontier/squid servers and DVMFS and Shifter per-node-cache

Dirk Hufnagel and Brian Bockelman:



LSST-DESC/LZ: Data Challenges

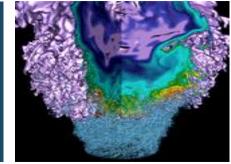
- LSST-DESC data challenge (DC2) : phoSim image generation ('Raytrace')
 - Uses 34 processes each of 8-threads on KNL
 - Issues include: 48hr pilots can't backfill long queue wait times. Also have jobs > 48hr
 - Reservation allowed longer jobs to progress
- LZ: Plan to run several workflows at NERSC
 - Recent data challenge (MDC2) 1M jobs
 - Memory capacity limited so Edison best 'value'
 - Using DVMFS with /project mount as backup
 - I/O to /project issues at >1000 node scales



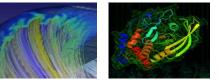
NoVA/STAR: Large-scale process.

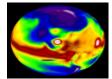
- NoVA: Multi-dimensional neutrino fits
 - 1m cores in reservation across all Cori (hsw and knl)
 - 35M core-hours in 54 hr total
 - Fast turn around of processing (via reservations) for <u>Neutrino18 Conf</u>
- STAR: Data reconstruction:
 - Transfer from BNL via DTN
 - Very efficient stateless workflow:
 - >98% prod eff
 - Use local MongoDB
 - MySQL read-only DB in shifter per-node-cache

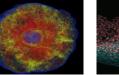
8



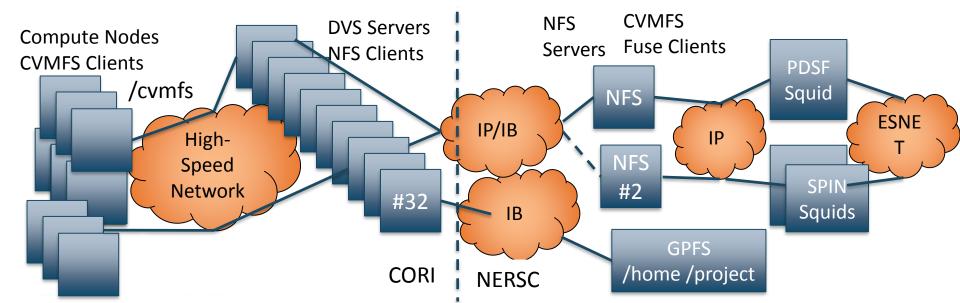
Direct read / w


Nova HepCloud Monitor (courtesy


Burt Holzman)


A couple of recent technology developments

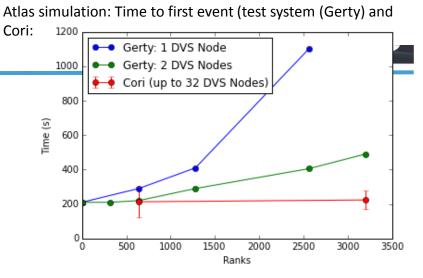




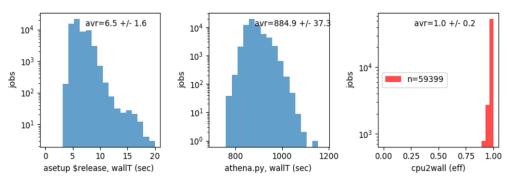
CVMFS -> DVMFS

- Restrictions with compute OS (FUSE etc.) has made providing /cvmfs at NERSC painful:
 - Can <u>stuff into shifter containers</u> used in production by ATLAS/CMS
 - But large images; non-instant updates; adding other releases/repos not easy etc.
- Instead use Cray DVS (IO forwarder for non-lustre filesystems) to provide up-to-date CVMFS (over NFS) with caching at DVS nodes

DVMFS

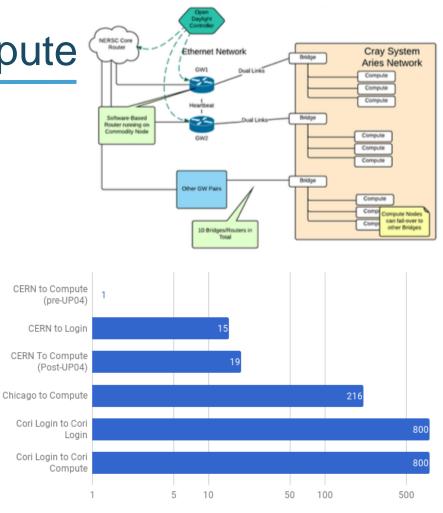

• Startup time scales fine (with enough DVS Servers)

Many issues encountered on Cori:


- Cray kernel bug / DVS patch
- Excessive boot time for mounts
 - Use crossmnt of /cvmfs
- Receive wrong file! (#1)
 - 2 NFS servers have different inodes
- Receive wrong file! (#2)
 - Different repos reuse inodes and because of dvs and crossmnt can clash
 - Back to separate mounts

Now seems stable against errors

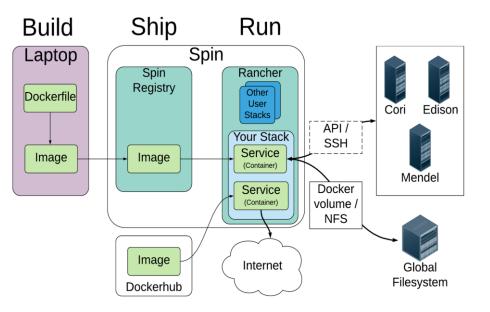
- 16 repos mounted.



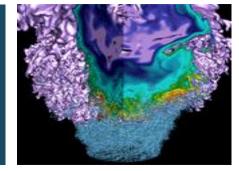
Atlas simulation **crash-test**, 1-CPU core, Jan Balewski 15 minutes simulation of 3 events, random requests of 60 releases of Atlas software, software and condition DB delivered via CVMFS, 32 concurrent tasks per node. 99 node job. **Failure rate: 1/60000**

WAN Networking to compute

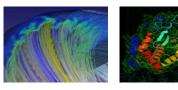
- Cori compute nodes on 'Aries' highspeed network
 - External traffic on Cray XC normally via 'RSIP' (limited performance)
- <u>'SDN' project</u>: first phase to replace RSIP with VyOS software
 - iperf test 5 Gbs -> 26 Gbs
 - But TCP backlog drop on Aries affected transfers via some protocols (including xrootd) : fix in Aug 2017 OS upgrade
- Xrdcp rates now exceed directly connected login nodes

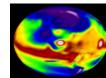

Xrootd (Single Stream) Bandwidth (MB/s)

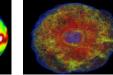
SPIN

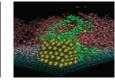

Container-based platform

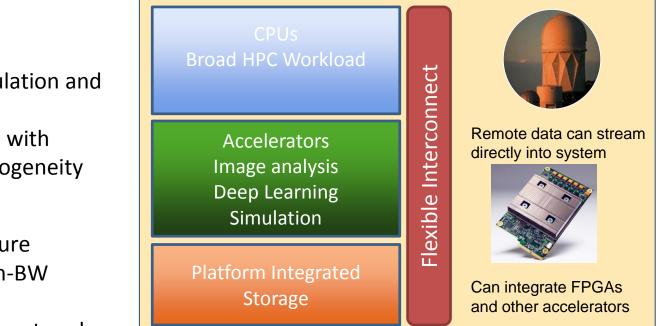
- Can be used for scalable science gateways, workflow managers, databases and other edge services etc.
- User-defined minimal NERSC effort
- Currently being commissioned:
 - Early HEP projects with NERSC staff support
 - Squid servers; science gateways ...






The coming future





NERSC-9: A 2020 Pre-Exascale Machine

Capabilities

- 3-4x capability of Cori
- Optimized for both simulation and data analysis
- Looks ahead to exascale with specialization and heterogeneity

Features

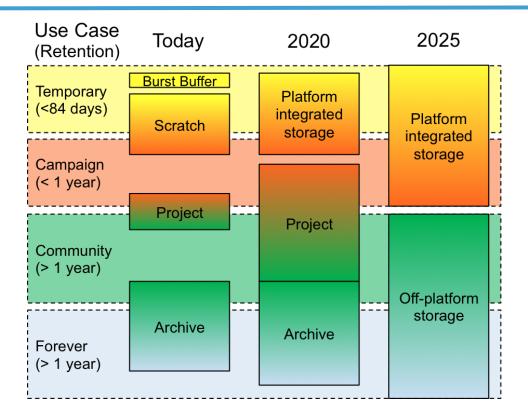
- Energy Efficient architecture
 - Large amount of High-BW memory
 - High BW, low latency network
- Production deployment of accelerators for the DOE community
 Single Crer All Flash HPC filesystem

NERSC 'Storage2020' roadmap

Nersc

All-flash parallel file system feasible for NERSC-9

> 100 PB diskbased file system


> > 350 PB HPSS archive w/ IBM TS4500

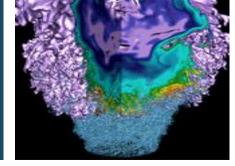
DEPARTMENT OF

NERG

Office of

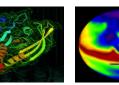
Science

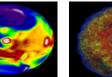
Conclusions

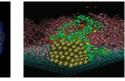


- Many (current and planned) HEP experiments using HPC resources for production at NERSC (not just demos, stunts, or proof-of-concepts)
 - CMS, ATLAS, LZ, Belle2, DayaBay, LSST-DESC, CMB-S4, DESI, NoVA ...
 - Variety of different approaches taken and variety of Use Cases: MC Production; Reconstruction; Statistics. Enabling some workflows and scale/turn-around times that are not-possible with other resources
 - Also application porting (NESAP) and interactive machine-learning uses
- Successes and also challenges. Experiments and NERSC have developed approaches and capabilities to run these workloads on 'big' HPC machines
 - Machines that must still cater for broad workloads (>>90% non-hep-ex); be dense; power-efficient, manageable, and leading-edge
 - Technologies include Shifter; 'SDN'; DTNs; DVMFS; SPIN
- Workflow and software barriers remain. Future brings increased support and new resources (N9, Storage2020, SPIN) but also architectural challenges

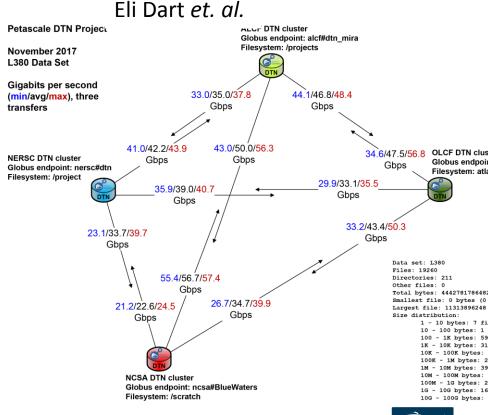





Backups



Production transfers to DTN


- <u>'Petascale' project</u> with ESnet and others driven performance from ~6-10 Gbs to ~20-~40Gbs)
 - For 'real' datasets

J.S. DEPARTMENT OF

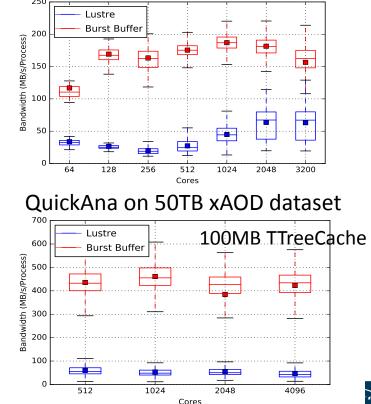
- Onto NERSC project filesystems (via DTN nodes)
- HEP experiments (e.g. ATLAS) using FTS/rucio to pure-GridFTP DTN endpoints
- Expand testing to FNAL, BNL

Office of

Science

Burst Buffer

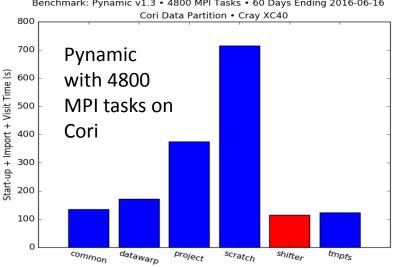
- 20 -


WB, Steve Farrell, Vakho Tsulaia et. al

- Burst Buffer: 1.8 PB all-flash
 - DataWarp: on-demand posix filesystems
 - Benchmark peak:, ~1.7 TB/s (read/write)
- Potential performance gains for many I/O heavy workloads in HEP experiments shown at <u>CHEP</u> 2016
- Outperforms Lustre and scales well (and both are good for bulk I/O)
- Many production and large-scale workloads using BB
 - But not so much by HEP-ex production ... insufficient gain for those workloads – possibly due to other overheads

Office of Science

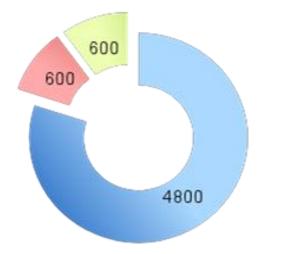
Derivation (xAOD->xAOD) in AthenaMP

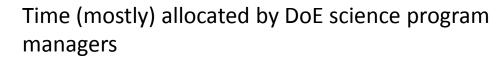


Shifter

Doug Jacobsen, Shane Cannon *et. al.*

- Crays run CLE OS (modified SLES)
 - Linux codes should compile fairly easily but packages can be different – containers are a solution
- Shifter allows users OS stack
 - Imports docker (or other) images
- Integration with HPC software and architectures
 - MPI and other system libraries, integration with workload managers,
 - Volume mount NERSC filesystems
 - NERSC retain control of privilege
- In use by ATLAS, CMS and numerous small HEP experiments
 - <u>Recipes including MPI</u>
 - Example containers for HEP
- Also has benefits for shared library loading


Pynamic v1.3 start-up + import + visit only (no compute). Median benchmark time

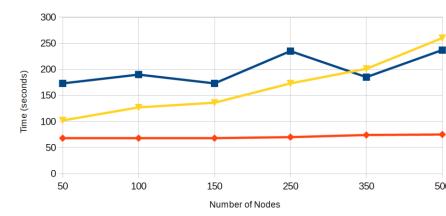

How time on NERSC big machines is allocated

Allocated Hours 2017 (Millions)

DOE Mission Science 80%
ALCC (computing challenge)10%
Directors Discretionary 10%

- ~15% HEP (including lattice, cosmo etc.)
- Recently large allocations to LHC
- Yearly allocations though some hope/plan of being able to allocate longer ones
- Scratch and project disk storage 'included' at ~10 TB level though larger on request
 - As is archive /HPSS
 - Some buy sponsored storage (e.g. Daya Bay)
- 'PDSF' cluster is different 'owned' by those HEP experiments with fairshare division
- Machines popular little opportunistic idle time.
 But backfill possible (esp. for small, short jobs)
 due to e.g. draining for large jobs

Office of Contract of Contract

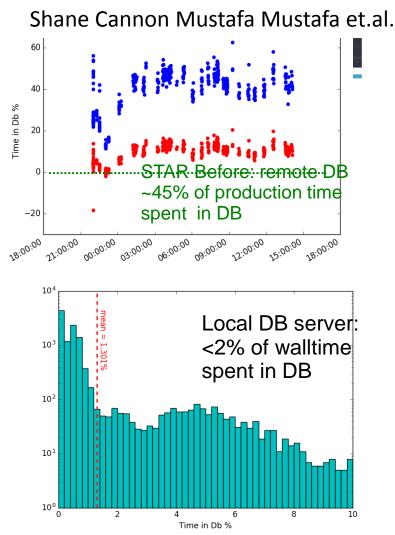

23

Software - CVMFS

- Historically NERSC systems have not been keen on fuse
- One approach is to <u>'stuff' cvmfs</u> <u>into a container</u>:
 - unpack cvmfs; removing duplicates (with e.g. 'uncvmfs') and build SquashFS image
 - Working in production for ATLAS and CMS
 - Now users can build even these big images – NERSC loads to shifter

Lisa Gerhardt, Vakho Tsulaia ...

AthenaMP startup time Shifter; Burst Buffer; Lustre


Small file I/O

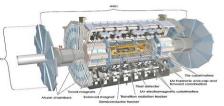
- Burst buffer and Lustre recent enhancements for small file I/O
 - DVS client side caching in BB
 - Multiple meta data servers (DNE) for Lustre
- Also shifter perNodeCache
 - Temporary xfs filesystem all metadata on WN
 - E.g. used for STAR read/only copy of mysql database on compute nodes

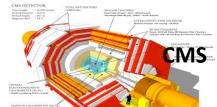
24

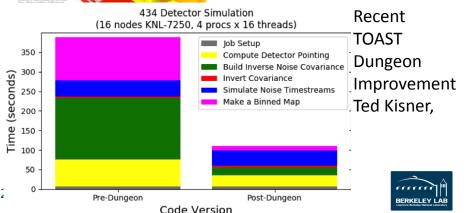
CMS use for madgraph jobs

NESAP: Software

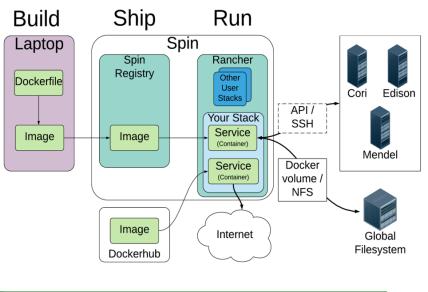
NERSC Exascale Science Applications Program

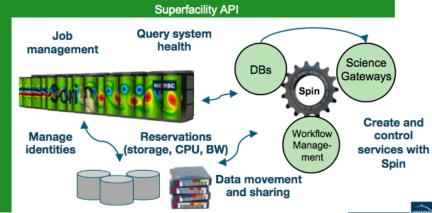



- Extended NESAP program to projects processing experimental science data: "NESAP for Data"
- Had call: 4/6 teams chosen were HEP
 - Teams get postdoc at NERSC
 - And vendor collaboration (dungeon sessions), extra support from NERSC.
- Plan to continue NESAP for Nersc-9 with "data" apps from the outset



Rollin Thomas et. al.





Workflows: and SPIN

- Now deploying container-based platform (SPIN) to create scalable science gateways, workflow managers, and other edge services with minimal NERSC effort
- Ultimately seek to provide software/API for (e.g.) data transfer/sharing, migration between file system layers, scheduling, usage query, job/workflow status (Superfacility API)
- Build on existing best practice

26

