A unified Information System for WLCG and beyond

Alexey Anisenkov (BINP)

on behalf of CRIC team

CHEP 2018, Bulgaria, 10 July 2018
Distributed Computing Environment (WLCG)

- LHC Experiments rely on huge heterogeneous distributed environment
 - variety of Computing Resources involved (GRID, Clouds, HPC)
 - variety of Infrastructures and middleware providers

- Each community uses and describes Resources in its own way
- **Computing Models** are similar but still have different implementation
WLCG Information landscape

Components of the WLCG Information System

- GOCDB
- OIM
- Open LDAP BDII
- REBUS

WLCG information consumers

- Rucio
- PanDA
- Phedex
- GlideinWMS
- HammerCloud

Other sources

And many others...
Current limitations of the WLCG Information System

- Multiple sources of information. Data is sometime contradictory or incomplete. Debugging is complicated. No central place where data can be validated
- Integration of new type of resources is not straightforward
- Complex objects like storage services with variety of access protocols and storage shares is not properly described

No high-level information middleware which completely covers Experiments use-cases and describes resource as VOs need

Currently every experiment has to solve all those problems on its own
Solution: a unified Information system

High level information system aiming to describe the topology of the WLCG infrastructure (resources provided by the WLCG sites) and experiment-specific configuration required to exploit this infrastructure according to the experiments Computing models.

CRIC is a framework providing a centralized (and flexible) way to describe which resources LHC experiments are using and also how they use them:

- Clear distinction between resources provided by (Sites) and resources used by (Experiments)
- Experiment independent, but still experiment-oriented
- Plugin based approach allows customization to address various experiment requirements and implementation of the dedicated experiment instances
- Shared building blocks to optimize development process and to ensure common look and feel. Think about it in terms of lego bricks
- Flexibility to address technology evolution and changes in the experiment computing models and applications. Lego bricks again!

Alexey Anisenkov, CHEP-2018
CRIC Architecture: plugin based

- Modular architecture is based on the Django framework, implementing different apps for CORE (provided by) and experiment (used by) parts.
- Data are exposed via REST API which is configurable by filters and different presets (views).
- Bootstrap, jQuery, Web services and many other modern tools and technologies are used.
Authorization and Authentication (A&A)

- CRIC supports enhanced Access controls and user Group management
- Several Authentication methods are enabled
- Flexible utilisation of Permissions, Roles and Groups at various levels
- Fine grain A&A on the level of a single CRIC object
- Ability to bootstrap User info from whatever external source (CERN user DB, Experiment DBs, config files, e-groups, etc)

Each Experiment configures own Data access policies!
Example of A&A use-cases for different experiments

- **CMS** is planning to use CRIC not only to define access rights for CRIC objects, but also to define/expose user privileges for other **CMS applications** (CRAB, Phedex, etc...). Relies on CERN SSO and local authentication.

- **ATLAS** uses a simpler concept based on user’s DNs coming from VOMS.

Experiment decides what elements should be used out of the CRIC box to implement own policies and follow own workflow.

Alexey Anisenkov, CHEP-2018
Logging functionality - track the changes

➢ CRIC provides an advanced logging functionality to monitor, administer and troubleshoot the system
➢ Logging is performed at the object level (a given object or any other object related to it)
➢ Full list of changes (including old values) is provided through build-in table view.
➢ You can check who, when and how interacted with an object.
CRIC introduces unified description of Service Resources in particular to target and resolve the complexity of SE definition.

- Link together all protocols, activities, closeness metrics, space tokens, other experiment specifics belong to same Storage into unified Resource
- Multiple protocols concept
- Connect associated CE to default SE for given activity
- Integration of new SE technologies (e.g. ObjectStores) within the experiments

Alexey Anisenkov, CHEP-2018
Experiment specific concepts. CMS Facility example

- Facility is a **CMS specific** concept
- An aggregation of set of sites and services in a CMS administrative domain

<table>
<thead>
<tr>
<th>CMS Facility KIT</th>
<th>Authorization Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Parameters</td>
<td>Executive(s)</td>
</tr>
<tr>
<td>Facility Name</td>
<td>e-groups:: - empty list -</td>
</tr>
</tbody>
</table>
| Full Facility Name | users:: cms.kit.exec
| Location | users:: cms.kit.exec |
| Web Page | users:: cms.kit.exec
| Timezone | users:: cms.kit.exec |
| RC site (GOCDB/OIM) | users:: cms.kit.exec |
| Last modification time | users:: cms.kit.exec |

<table>
<thead>
<tr>
<th>Resources</th>
<th>Backup Squid(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS Site(s)</td>
<td>This facility isn't hosting any backup squids.</td>
</tr>
<tr>
<td>Compute Unit(s)</td>
<td>Frontier(s)</td>
</tr>
<tr>
<td>Storage Unit(s)</td>
<td>This facility isn't hosting any frontiers.</td>
</tr>
</tbody>
</table>

Alexey Anisenkov, CHEP-2018
General details and links to other objects.

- Facility is linked to a GocDB/OIM site
- (which is an experiment independent concept defined in CORE part of CRIC)
General details and links to other objects.

Facility is linked to a GocDB/OIM site (which is an experiment independent concept defined in CORE part of CRIC).

Per-Facility authorization groups

mapped to users and CERN e-groups.

CMS Facility KIT

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facility Name</td>
<td>KIT</td>
</tr>
<tr>
<td>Full Facility Name</td>
<td>Karlsruhe</td>
</tr>
<tr>
<td>Location</td>
<td>1 Vliet of the Konrad-Heiden (4.900), Germany</td>
</tr>
<tr>
<td>Web Page</td>
<td>http://www.t1.de</td>
</tr>
<tr>
<td>Timezone</td>
<td>Europe/Berlin</td>
</tr>
<tr>
<td>RC site (GOCDB/OIM)</td>
<td>FZK-LCG2</td>
</tr>
</tbody>
</table>

Last modification time

- **2018-06-20 13:45:34**

Resources

CMS Site(s)

- **T1_DE_KIT**
 - SU(s): T1_DE_KIT_Buffer, T1_DE_KIT_Disk, T1_DE_KIT_MSS, T2_DE_DESY
 - CU(s): CU_T1_DE_KIT (T1_DE_KIT)

Compute Unit(s)

- CU_T1_DE_KIT

Storage Unit(s)

- T1_DE_KIT_Buffer
- T1_DE_KIT_Disk
- T1_DE_KIT_MSS

Backup Squid(s)

- This facility isn't hosting any backup squids.

Frontier(s)

- This facility isn't hosting any frontiers.
General details and links to other objects.

Facility is linked to a GocDB/OIM site (which is an experiment independent concept defined in CORE part of CRIC)

Per-Facility authorization groups mapped to users and CERN e-groups.

Aggregation of Experiment specific objects like Sites, Compute and Storage units ...
Experiment specific concepts. CMS Facility example

- General details and links to other objects.
 - Facility is linked to a GocDB/OIM site (which is an experiment independent concept defined in CORE part of CRIC)

- Per-Facility authorization groups mapped to users and CERN e-groups.

- Track the history of changes for given object

- Aggregation of Experiment specific objects like Sites, Compute and Storage units...
Experiment-specific concepts. Computing resource example

➢ Experiments use different systems to submit jobs in the grid

➢ **CMS** is submitting Pilots through **GlideinWMS**. Currently GlideinWMS configuration is described in the XML files hosted by Github. This configuration has been imported into CRIC.

➢ **ATLAS** is submitting Pilots through AutoPilotFactories (APF), ARC ControlTower (aCT), and now Harvester.
 ○ These frameworks require config files which describe the Computing Elements (and batch system underlying)
 ○ These configs are auto-generated from AGIS, exploiting the resource description in "core", and in the future will come from **CRIC**
Status and plans

➢ CMS CRIC instance is ready for validation by the CMS community
➢ Ongoing implementation of CRIC instance for WLCG central operations. It represents CORE part with sites and services used by all 4 LHC experiments

Next steps:

➢ Porting REBUS functionality into CRIC
➢ Extending CMS CRIC functionality following CMS feedback
➢ Migrating AGIS to ATLAS CRIC
Conclusions

➢ All LHC experiments are sharing common computing infrastructure. CRIC offers a common framework describing this infrastructure, but also an advanced functionality to describe all necessary experiment-specific configuration. The way the system is designed each experiment can independently describe it’s world and still coexist with the others under the same roof.

➢ First CRIC version mainly focused on the CMS-required functionality is ready for validation. We need you to start using CMS CRIC and provide us with use cases you think need improvement and error-proofing!

➢ Check CRIC at http://cms-cric-qa-01.cern.ch