
Multicore workload scheduling

in JUNO

Xiaomei Zhang Kang Li Andrei Tsaregorodtsev Xianghu Zhao

Institute of High Energy Physics

CHEP2018, Sofia

Content

 Motivation for multicore support in JUNO

 Multi-core pilot mode strategy

 Implementation and testing

 Efficiency study and optimization

 Summary

2

Jiangmen Underground Neutrino Observatory

 JUNO, a multi-purpose neutrino experiment designed to measure the

neutrino mass hierarchy and mixing parameters

 Start to build in 2014, operational in 2019, located at Guangzhou

province

 Estimated to produce 2PB data/year for 10 years

 20 kt Liquid Scintillator detector, 700m deep underground

 2-3% energy resolution

 Rich physics opportunities

3

JUNO Parallel Data Processing

 Parallelization is being introduced into JUNO offline software system

based on TBB

 Fasten JUNO data processing and fully use modern multi-core and

many-core hardware

 Enable multi-thread and multi-process simulation and

reconstruction

 Event-level parallel processing of the JUNO offline software framework

SNiPER is already in prototype phase

 See Jiaheng Zou’s talk “The Event Buffer Management for MT-

SNiPER ”

 Simulation based on Geant4.10 is in good progress

 See Tao Lin’s talk “Status of parallelized JUNO simulation software”

4

Dirac-based JUNO distributed computing

 JUNO Distributed Computing (DC) has been built on DIRAC

to organize heterogeneous and distributed resources

 Able to integrate with Cluster, Grid and Cloud

 Currently work in single-core mode

 To accept the coming multi-core jobs ， new workload

scheduling strategy has to be introduced into JUNO DC

Workload Management System (WMS)

 Multi-core design objectives

 Allow to have both single-core and multi-core JUNO jobs coexisting in

a long period

 Capable to share resources with other experiments on the same sites

with good efficiency
5

DIRAC Workload Management System

 DIRAC workload scheduling is

based on pilots strategy

 User jobs arrive in TaskQueue

 Pilot Director submits pilot jobs to

sites

 Matcher does the matching between

Pilot jobs and users jobs from

TaskQueue

 Pilots accept and start user jobs

 Key point for multi-core supports

 single-core Pilots to multi-core Pilots

 Matching between multi-core

resource and multi-core jobs 6
Pilot

Director

Site

Matcher

Service

Multi-core pilot designs (1)

 In current single-core(SC) pilot mode

 Each pilot takes one slot from local resource

 Pull one SC job from job pools

 In multi-core(MC) pilot mode, to accept MC jobs

 Each pilot need to occupy one or more slot

 Each pilot can pull one or more jobs from job pools

7

Multi-core pilot designs (2)

 There are two strategies to provide multi-core pilots

(1) Customized pilots (B)

• Send pilots with the same size as the jobs to be pulled

• M-core pilots occupy M slots and pull M-core jobs

• Can accept both single-core and multi-core jobs

• But low efficient when matching with a hybrid of various-core jobs

• pilot “starving” will happen

8

Job Pool

Multi-core pilot designs (3)

(2) Shared partitionable pilots (C)

• Send Pilots with same number of cores

• The size of pilots can be whole-node, 4-node, 8-node….., adjusted

according to site policy

• M-core Pilots pull more than one N-core jobs (N<=M) until internal slots

used up

• For a hybrid of various-core jobs, expected to be more efficient than

customized pilots since pilots can be shared by different-core jobs

9

Tags for matching

 In multi-core case

 Jobs have requirements on cores

 Sites have different number of cores to provide

 Tags introduced to mark jobs and resources for matching

• Sites define number of cores to be accepted in DIRAC CS

• NumberOfProcessors: Number of cores can be got from the site

• RequiredTag: Number of cores can be pulled

• Jobs define number of cores required in JDL

• Tags=Nprocessors

• Tags=WholeNode occupy all slots in one WN

• Job Tag information will be kept in TaskQueue

• Matcher uses these tags to do final matching
10

Multi-core pilots Implementation

 In customized Multi-core mode

 MC pilot directors are introduced to submit MC pilots corresponding

to the job tags in TaskQueue

 In partitionable Multi-core mode

 Pilot directors are adjusted to submit pilots with same number of

cores

 New pilot working mode is introduced in pilots

 Can accept more than one job

 Auto-detect the available cores and do simple scheduling, just

like little “cluster”

 Matching service takes care of matching using tags from

JobDB and DIRAC central configuration service

11

Interface to sites

 To completely enable multi-core modes, also need sites to

accept multi-core jobs

 For Batch system or Grid

 A multi-processor queue or whole node queue need to be created

to accept multi-core pilot jobs

 The interface to submit jobs to sites also need to add supports of

multi-core jobs submission commands

 For Cloud

 VM Director, in the same role of Pilot Director, need to be adjusted

to create multi-core VMs instead of submitting multi-core pilots

 Multi-core pilots auto-booted up in VMs to get multi-core jobs

12

Monitoring for each pilot and job

 In Job Monitoring, Number of cores used by Jobs is added

to Job Monitoring

13

 In Pilot monitoring, Cores information of pilots are added to

 TotalCores to know the total number of processors the pilot got

 UsedCores to know current cores being occupied

Monitoring for each pilot and job

14

 Pilots monitoring graph shows scheduling efficiency for the

chosen pilot

 X: Time, Y: Cores

 Gray line shows available core in pilots

 Blue line shows cores used by jobs

 From graph, we can see cores of pilots are not fully used in

its life cycle

Tests

 Tests have been done wtih SLURM and HTCondor sites

 JUNO Geant4 Monte Carlo jobs

 216 CPU core, each nodes with 12/24 cores

 Three job type input included

 Single-core, whole-node

 Mixture of SC and MC jobs

 Monitoring and accounting use ElasticSearch and Ganglia

 Three modes are tested and working well

 Single-core

 Customized Multi-core

 Partitionable Multi-core

Efficiency study (1)

 With SC jobs, scheduling efficiency of three modes has no

big differences
 With same input of jobs

 Overhead and tail come from the pilot itself who need time

for its life cycle

16

1 core pilots with

1 core jobs,

89.2%

12 core pilots

with 1 core jobs,

91.2%

Efficiency study (2)

 Tests also done with a hybrid of various-

core jobs

 Scheduling efficiency of Customized

pilots (48%) much worse than that of

Partitionable pilots(81%) as expected

 More idle pilots in customized pilot

mode due to its one-to-one matching

policy

 Scheduling efficiency of Partitionable

pilots mode also not good than SC mode

 Resources occupied not fulfilled

17

pilot scheduling efficiency

single-core pilot

4-core pilot

jobs scheduled in pilots

Partitionable

mode

Efficiency study (3)

 Deep into partitionable

pilots mode

 12-core pilots

 1 core: 2 core: 4 core: 8core

= 1:1:1:1

 Efficiency is 75%

 One of main efficiency loss

is due to scheduling policy

 Most jobs with less cores are

easily selected at beginning

 8-core jobs are finished at

last past with 4-core idle

18

Efficiency optimization

 Improvements on Scheduling policy in Matcher

 Old : Randomly choose jobs matched

 New: Choose jobs with high priority

 Define priority with related factors, including

 Jobs waiting time, rest of cores in pilots and cores requested by jobs

 An example to count priority of job(i), you can add more factors in

The first part is to choose “Big” jobs to reduce resource gap

 The smaller core gap between pilot（v）and the job（c）, the higher priority the job get

The second part is to avoid “starving” of “Small” jobs

 The higher waiting time (w) above average waiting time (r), the higher priority got

Experiments can tune parameters a、b、k according to different cases

Efficiency optimization

 The tests with new policy showed

that the efficiency can be improved

15%

 “Big” jobs are matched first

 Single-core jobs can fill the remaining

gaps

20

OLD

NEW

Summary and outlook

• Two multi-core pilot modes have been implemented

• The prototype of multi-core supports in DIRAC-based

JUNO distributed computing platform is working properly

• Scheduling efficiency is a concern hybrid of various-core

jobs

• Efficiency study shown that the partitionable pilot mode is

more promising in hybrid of various-core jobs

• With improvement of scheduling policy, the scheduling

efficiency of partitionable pilot mode can be improved a lot

• Parameters need to be tuned with future real user cases

and job pressure

21

