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HEP simulation

• Simulation is an essential application for HEP
• We have very powerful tools for simulation

– And active R&D programs
• But gall darn is it expensive!

– Large cost in CPU resources
– Large manpower cost in developing

fast-simulation methods



Deep learning generative models
• Deep neural networks that learn to sample 

from a data distribution
– Transform a simple “noise” distribution to 

the target distribution
• Popular examples:

– Variational Autoencoder (VAE)
– Generative Adversarial Network (GAN)

• The GAN framework poses the problem as a 
trainable two-player game

– A generator tries to produce realistic samples
– A discriminator tries to distinguish real from 

fake samples
• GANs are notoriously unstable to train

• Difficult to define good metrics for learning



Related work

• Deep learning on HEP images
– Jet images
– Full detector images

• Generative models for HEP
– Jet images, multi-layer images 

(CaloGAN), full 3D (CLIC), etc.
https://arxiv.org/abs/1711.03573

Relevant talks this week:
- S. Vallecorsa, A Machine Learning Tool for fast simulation
- J.R. Vlimant, Training Generative Adversarial Models over 

Distributed Computing Systems
- V. Chekalina, Generative Models for Fast Calorimeter 

Simulation: LHCb Case
- T. Trzcinski, Using Generative Adversarial Networks for 

fast simulations in the ALICE Experiment CaloGAN
https://arxiv.org/abs/1712.10321



Next-generation models
How do we take deep generative models for HEP                                            
to the next level?
• Develop bigger, smarter models

– Models that can learn more complex physics and structure
• Improve training methods

– GAN stability innovations like Wasserstein GAN, Optimal-Transport 
GAN, Progressive GAN, Spectral-norm GAN

– Training methods that incorporate physics knowledge
• Improve representations and architectures

– Generalize beyond images
• Improve research productivity

– Faster training with distributed methods
– Improved, interactive development workflows

TNG-GAN



CosmoGAN
• Replace expensive cosmology 

simulations with a Deep-
Convolutional GAN (DCGAN)

• Train the generator to produce 
weak lensing convergence maps

Resulting images have very high fidelity and 
reproduce the desired physical properties
• 2pt correlations (power spectrum)
• higher-order correlations (Minkowski

functional) Mustafa Mustafa, Deborah Bard, 
Wahid Bhimji, Rami Al-Rfou, Zarija Lukić
https://arxiv.org/abs/1706.02390



Full HEP detector GAN

Can a GAN be trained to learn the distribution of full detector images?
• In HEP, previously only applied to individual particles

Can the generator learn to produce realistic jets?
• Reconstruct-able, with the correct distributions?

How could we use such a model?
• Theory parameter interpolation
• Pileup simulation
• Other possibilities



RPV whole detector GAN

Data
• 64 x 64 x 1 images representing calorimeter tower energy
• Delphes+Pythia simulation using ATLAS detector card

Architecture
• “Standard” DCGAN topology with 4 conv + 1 dense layer 

(with batch-normalization) in generator and discriminator
• Threshold on the generator output for sparsity

Analysis
• Images reconstructed with FastJet (R=1, pt>200GeV)
• Kolmogorov-Smirnoff test used to compare real and 

generated jet distributions
• KS metric used to select best model and epoch in

random hyper-parameter search

Real Fake



RPV whole detector GAN

The generated 
samples produce 
realistic jet 
multiplicities and 
kinematics

This is without 
imposing any
physics 
knowledge!



Conditional RPV GAN

• Can the GAN learn to produce images 
conditional on the SUSY theory parameters?
– We augment the discriminator and 

generator to be conditioned on Mglu,Mneu

• The GAN is shown to learn the conditional 
distributions
– E.g., summed jet mass shifts as expected

• Could use this to supplement full simulation 
in MC signal grids
– Coarse full-sim grid
– Interpolate with GAN

Real

Generated

Mglu = [1400, 1600, 1800] GeV

Work with Ben Nachman
(LBNL), Harley Patton (Berkeley)



Pileup GAN

• Pileup poses big challenges for HL-LHC computing workflows
– Need to simulate and store a very large volume of pileup events
– Need to read this data from disk and overlay during digitization

• The distribution can be modeled with a whole-detector GAN
– Simulate samples and train model once
– Use the trained generator for fast, on-the-fly pileup sampling

• To test fidelity, now we can evaluate the effects on reconstructed 
object kinematics
– Overlay real pileup or generated pileup
– Compare the shifts in the distributions



Pileup GAN - µ=20

Real

Fake

Sum of 
jet mass

• The GAN gives realistic looking 
pileup images

• When overlayed onto RPV events, we 
see realistic shifts in the distributions

Number 
of jets



Generalizing geometry

• Not all HEP detector geometries map to an image
– We cannot always use standard convolutional 

architectures
• How do you generalize to arbitrary geometries?

– Geometric Deep Learning methods
– E.g., Graph Neural Networks

• Already shown effective for some tasks in HEP
– Classification of jets
– Pattern recognition for particle tracking
– But not really explored yet for generative tasks

• New sets of challenges, but new possibilities
– Work in progress



Increasing productivity with HPCs

• At NERSC we have a lot of computing power
– The Cori supercomputer with 9668 KNL                                            

nodes and 2388 Haswell nodes
– Cutting edge Deep Learning frameworks, tools,                                       

and methods, optimized for scale with industry collaborations
– Next-generation supercomputer NERSC-9 (2020) will have accelerators

• We’re working on improving the Deep Learning experience on HPCs
– Scaling across nodes for training and hyper-parameter optimization
– Jupyter-notebook-based distributed workflow solutions



Distributed training on HPCs
Distributed training is hard
• Fixed batch size 

(strong-scaling) hits 
bottlenecks

• Growing batch size 
(weak-scaling) scales to              
thousands of nodes, but                       
has convergence issues

This is even harder with GANs
• They’re already unstable!

Various methods promise to improve this
• E.g. Optimal Transport GAN
• But no magic bullet (yet)

CosmoGAN CosmoGANStrong 
scaling

Weak scaling
up to 2k nodes

Optimal Transport GAN

Presented at CUG 2018, PASC 2018
Thorsten Kurth



Distributed DL with Jupyter notebooks

Realizing the full power of supercomputers
for Deep Learning with Jupyter notebooks
• Distributed training with IPyParallel+horovod
• Distributed HPO with IPyParallel

Distributed 
training with 
IPyParallel and 
Horovod

Scales with 
no overhead

RPV CNN 
classifier

Load-balanced 
task scheduler

Launch           
hyper-parameter 
training tasks

IHPC slides

Example GAN HPO notebook

Presented at Interactive-HPC at ISC
S. Farrell, W. Bhimji, A. Vose, S. Cholia, 
O. Evans, M. Henderson, R. Thomas,    
S. Cannon, Prabhat



Conclusions

• Deep generative models are showing a lot of promise for HEP simulation
• We’ve demonstrated that GANs can even learn full event physics

• RPV event images; conditioned on theory mass
• Pileup event images

• We’re also been making progress on the computing challenges
• Extreme scale distributed training
• HPC usability with Jupyter notebooks

• A number of open challenges remain to bring high-fidelity generative 
models into practice
• Addressing stability, particularly at large scale
• Generalizing geometry



Thank You



NERSC
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• Mission	HPC	center	for	US	Dept.	of	Energy
– 7000+	diverse	users	across	science	(e.g.	cosmology,	

climate,	biosciences,	materials,	particle	physics)
• Cori	– Cray	XC40	(31.4	PF	Peak)

– 9668	Intel	Knights	Landing	(KNL),	2388	Haswell nodes
• Deep	learning:	Data	and	analytics	(DAS)	group:

– Tools	for	machine	learning;	optimized	for	scale
– Cutting-edge	methods/Collaborations/Training

• Interactive	Computing	at	NERSC:
– Modifications	to		SLURM	including	real-time	and	

interactive	queues	with	dedicated	resource
– Also	other	interactive	features	not	described	here:	

(visualization;	science	gateways	etc.)



RPV-GAN hyper-parameter optimization

Ks_comb = ks_nJet + ks_sumMass + ks_jetPt
Where each KS metric is the negative log of the KS test p-value



RPV-GAN average images

GeneratedReal



Pileup GAN - µ=200

Real

Fake

Number 
of jets

Sum of 
jet mass

● With µ=200 pileup, the mass shift 
isn’t perfect
○ But it’s in the ballpark

● Room for improvement





WGAN Generator Loss first 10 epochs
(rolling average over 100 iter to smooth)

Looks like wgan is more stable in this respect but….



Then goes bananas



Jupyter architecture 

• Allocate nodes on Cori interactive queue and start ipyparallel or Dask 
cluster
– Developed %ipcluster magic to setup within notebook

• Compute nodes traditionally do not have external address
– Required network configuration / policy decisions  

• Distributed training communication is via MPI Horovod or Cray ML 
Plugin
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