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CERN OPENLAB

A public-private partnership between the research community and industry, fostering innovativation
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Upgrades of LHC

A carefully set out programme of upgrades to increase the scientific reach.
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Challenges of Complexity

More collisions and more complex data at HL-LHC.

CMS: event from 2017 with 78 ATLAS: simulation for HL-LHC with
reconstructed vertices 200 vertices

CMS: event with 78 reconstructed vertices

ATLAS

EXPERIMENT

HL-LHC ti event in ATLAS ITK

at <p>=200

-0 . .
Ty SEESnlab Maria Girone, CERN openlab CTO




Resource Gap

Using current techniques, required computing capacity increases 50-100 times
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Closing the resource gap in the next decade
requires close collaboration with industry

Maria Girone, CERN openlab CTO
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R&D Areas towards Run3 and Rund4

The LHC experiments have a multi-pronged approach to closing the resource

gap

Scale out capacity with
public clouds, HPC, new
architectures

Increase data centre
performance with hardware
accelerators (FPGAs, GPUs, ..)

optimized software
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New techniques with Machine
Learning, Deep Learning,
Advanced Data Analytics
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Machine Learning in HEP

ML is an area with heavy investment within industry

« The LHC experiments are working closely with
iIndustry via CERN openlab
* Focus on adoption of accelerators (GPUs, FPGAS)

* Engineering resources dedicated to support the application
porting and increase knowhow on deep learning techniques

SIEMENS (intel)
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COMPUTER 3
ENGINEERING Machine learning and data analytics are hot topics at CERN openlab workshop

Wednesday, 4 May, 2016

Yandex |

Last week, CERN openiab held a workshop on machine learning and data analytics. The event, which took place on Friday 29 Apr
4 industry gather in the CERN IT Department 1

Data acquisition

* Real time event categorization

« Data monitoring & certification

» Fast inference for trigger systems
Data Reconstruction

» Calorimeter reconstruction

» Boosted object jet tagging

Data Processing

« Computing resource optimization
» Predicting data popularity

* Intelligent networking

Data Simulation

» Adversarial networks

» Fast simulation

Data Analysis

* Knowledge base

« Data reduction

« Searches for new physics
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Monitoring, Automation, Anomaly Detection

) SIEMENS (i@
Yandex
« Network security and fraud detection LHC magnets, industrial controls, ...
« Industrial monitoring and predictive failures Detector Health
» Looking at optimizing performance of * Complex system monitoring to minimize downtime
complex systems and reduce operations costs
* Minimize costs and improve Resource Utilization (scheduling, data placement,
resource utilization /0 optimization)
A multitude of Industrial Control Systemx
Reinforcement learning =8
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Data Quality Monitoring

Monitoring the data continuously is effort intensive and critical

« data is monitored by shift teams looking for anomalies in distributions

CMS uses supervised learning on reconstructed data with multi-

head NN to predict a probability of anomaly in separated

channels

* Results are combined to establish the quality of the data

CMS is also working with IBM on automated online monitoring at

sub-detector data and metadata level

« Predict anomalies in Ecal and Hcal using deep learning recursive NN

Yandex

» (Goal is to integrate detector control systems for a comprehensive

monitoring overview

V. Azzolini: Improving the use of data quality metadata via a partnership of technologies and
resources between the CMS experiment at CERN and industry
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https://arxiv.org/abs/1406.2661v1

Event Reconstruction

With current software and computer an
event like HL-LHC takes 10s of seconds

* Investigating CNN

Examine the detector hit information and
use 3D image recognition techniques to
identify objects

» Recognize physics objects from learned

patterns

* Most ML recognition techniques are
designed for regular coordinate systems

p

Investigate train-on-demand services to be

executed on HPC E4 (inteD
-::_- S'Eggmab Maria Girone, CERN openlab CTO

\ Particle Jet Energy depositions

in calorimeters

ATLAS

EXPERIMENT

11p://atlas.ch

F. Pantaleo: Distributed training of deep NN models
M. Kiehn: TrackML: the Kaggle HEP tracking challenge
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https://arxiv.org/abs/1406.2661v1

Object Identification

LHCDb is exploring particle identification in the RICH )
detector W%

« Convolutional neural networks to classify particles
based on the radius

corrected local y

« Comparing several modern frameworks: Keras, ] F5
TensorFlow, and Caffe e

- Two ongoing projects in openlab with E4 and
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Software-based Filtering and real-time
Reconstruction

CCCCCCCC
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The ALICE and LHCb experiments will increase their -
data acceptance rates for Run 3 ST
5 TB/s l

« LHCDb is investigating FPGAs and GPUs to allow
reconstruction of 5 TB/s of events in real time.
Deep learning techniques under investigation

and calibrations

0.1-0.2 TB/s l | Real-time alignment R

At HL-LHC higher data rates will require more
selective triggering and faster reconstruction HLT2 FULL RECO

i % Offline reconstructionand sttt
« CMS is porting heavy “offline” tasks to real-time  5-10 GB/s l—'

processing for HL-LHC 85% TUREO &

* Integrate GPUs in the HLT farm to give high- BN (oo caup [ Ofine feconsinicton and
guality reconstruction in 200 msec latency (as
opposed to tens of sec)

real-time analysis

F.. Pantaleo Patatrack
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Event Simulation

Looking at generative adversarial

« Simulation is one of the most resource-intensive networks to improve speed, without giving
computing applications. up accuracy of simulated events
* Main R&D areas:
« Adapting the existing code to new computing « One network attempts to simulate
architectures events that match a data distribution
 Replacing complex algorithms with deep- (ngerator G) |
learning approaches (FAST SIMULATION) * While a second network tries to

distinguish data and simulation
(Discriminator D)

D: Detective

tr 1
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S. Vallecorsa: A machine learning tool for fast simulation
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https://arxiv.org/abs/1406.2661v1

Outlook

** Machine Learning has heavy investments by industry and rapid development
cycles

<+ CERN openlab has active projects with industry in key areas such as data
acquisition, processing and analysis

¢ Help closing the resource gap in the LHC Run3 and Run4

J/

% Machine learning is one of the primary focus activities of CERN openlab phase VI

* We have made good progress towards adopting ML for automating data quality
monitoring and making faster simulation (without giving up on accuracy)

s Object identification and full event reconstruction are active areas of investigation

** ML is a fast moving field and we are hoping for more breakthroughs
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