Online Detector Monitoring Using AI
Challenges, prototypes and performance evaluation for automation of online quality monitoring of the CMS experiment exploiting machine learning algorithms

Adrian Alan Pol1,2, Gianluca Cerminara2, Giovanni Franzoni2, Cecile Germain1, Maurizio Pierini2, Filip Široký2,3

1Université Paris-Saclay, Orsay, France
2CERN, Meyrin, Switzerland
3Masaryk University, Brno, Czech Republic

European Research Council grant
Data Quality Monitoring (DQM)

- guarantees high-quality data for physics analyses:
 - online monitoring: live feedback during data acquisition;
 - offline monitoring: certify the data quality using offline processing;

- online DQM identifies emerging problems:
 - comparison to reference distributions;
 - comparison supported by predefined tests;
 - tests perform data reduction tasks (summary plots with alarms);
 - shifters and detector experts inspect histograms to spot problems;
 - tests designed to identify known failure modes;

- challenges of online monitoring, relevant to machine learning:
 - the latency of the evaluation process;
 - absolute normalization of the histograms is not possible;
 - granularity of the problems to spot;
 - no availability of the ground truth (labels).

Details on the infrastructure used for this Data Quality Monitoring (DQM) are given in [1].
Why machine learning?

The aim of this project is to **automatize** the CMS online DQM (with machine learning), solving or reducing many of the problems below. The goal is to improve the current protocol.

- **Latency**: human intervention and thresholds require sufficient statistics.
- **Volume budget**: amount of data a human can process in a finite time.
- **Static thresholds don’t scale**: assumptions on potential failure scenarios.
- **Human driven decision process**: alarms based on shifter judgment.
- **Changing running conditions**: reference samples change over time.
- **Manpower**: the effort to train a shifter and maintain instructions.
Test case: Drift Tube (DT) hit occupancy

Test case: data recorded by the DT chambers of the muon spectrometer.

- Monitoring **pattern**: histogram-based image classification.
- Hit occupancy contains the total **number of electronic hits at each readout channel**. It is a 2-dimensional array organized along layer (row) and channel (column) indices:

```
<table>
<thead>
<tr>
<th>Layer</th>
<th>Channel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
```

- At any time CMS DQM visualizes 250 DT occupancy histograms.
- Current test summarizes alarms in **one plot** based on the **fraction of dead cells** (zero hits).
Test case: Drift Tube (DT) hit occupancy

- **Expected**: small variance of hit occupancy between neighboring channels.

- **Anomalous**: noisy or inefficient area (example: low occupancy across all the 12 rows).
Approaches to the anomaly detection

- exploit the **geographical information** and detect different types of anomalies at **different scales** (ranging from a few channels to collective behaviors of big portion of the DT system);

Pipeline of fault detection:

- **local**: data collected in each chamber layer are treated independently from the other layers;
- **regional**: extend the local approach to account for **intra-chamber problems**; simultaneously consider **all layers in a chamber**, but each chamber independently from the others;
- **global**: simultaneously use the information of **all the chambers** for a given acquisition run; the position of the chamber in the CMS detector impacts expected occupancy distribution of the channel hits.

![Approaches to the anomaly detection](image-url)
Dataset Preprocessing

The occupancy 21000 occupancy histograms were preprocessed.

- *Standardization* of the chamber data: the number of channels in a chamber layer varies. Force **fixed-input dimensionality** with a row-by-row one dimensional linear interpolation.

![Raw Occupancy](image1)

![Standardized Occupancy](image2)

Standardization of the occupancy histogram
Dataset Preprocessing

- **Smoothing**: according to CMS DT experts *isolated* misbehaving channels are **not considered a problem**. One dimensional median filter is applied.

![Graph showing raw and smoothed occupancy](image)

Smoothing of the occupancy histogram

- **Normalization**: the need for comparing data across chambers or across runs; the input data set depends on the **integration time** and on the **LHC beam configuration and intensity**.
Local strategy: Scope & Method

- filters out most of the anomalies;
- assessing the (mis)behavior with high-granularity (few channels);
- data collected in each muon chamber layer are treated independently from the others to detect intra-layer problems;
- labels were provided by experts: 5668 good and 612 bad (∼0.1 positives).

In this experiment, we compare the performances of the following:

- **unsupervised** with a simple statistical indicator (variance within the muon chamber layer), and an image processing technique, (maximum value of the vector obtained by applying a variant of an edge detection Sobel filter \[2\]: \[S_i = \max([-101] \ast X_i)\]);
- **semi-supervised learning**, with Isolation Forest \[3, 4\], and \(\mu\)-SVM \[5\] (both validated with 5 stratified folds);
- **supervised learning**, with a fully connected shallow neural network (SNN), and a convolutional neural network (CNN) \[6\].
Local strategy: CNN details

- *rectified linear units* and *softmax* as activations, trained with Keras/TensorFlow, *Adam optimizer* and *early stopping* (patience = 32 epochs);
- *class weight* to account for class imbalance; the weight λ for a sample in class $\psi \in \{0, 1\}$ is: $\lambda_\psi = \frac{|S|}{2|S_\psi|}$, $S = S_0 \cup S_1$.

Loss function as a function of the number of epochs (left) and architecture of the CNN model (right)
Local strategy: Results

- convolutional neural network (CNN) outperforms other methods;
- performance of the CNN in low statistics region is different than the production test.

Left: ROC (Receiver Operating Characteristic) curve and AUC of the different models;
Right: stability of the CNN model and the current production test as a function of time (lumisection is approx. 23 s)
Regional strategy: Scope

- extends local strategy to filter out anomalies not seen by the previous approach;
- accounts for **intra-chamber** problems: simultaneously consider all layers in a chamber;
- the occupancy pattern within a chamber depends on the layer (row) information;
- example of use: identify layers with low efficiency (lower voltage).

Examples of chambers having low efficiency in chamber layer 9
Regional strategy: Method

- semi-supervised autoencoder [7] variations:
 - bottleneck,
 - denoising,
 - sparse,
 - convolutional;
- all chambers without any chamber layers labeled as faulty by the CNN local model were used for training (8424 matrices);
- all models minimize the mean squared error ϵ of input x and reconstructed \hat{x} samples: $\epsilon = \frac{1}{ij} \sum_{i,j}(x_{i,j} - \hat{x}_{i,j})^2$;
- a model will have a high reconstruction error ϵ on samples with voltage problem.
Regional strategy: Results

ROC and AUC of the different autoencoder models

Convolutional autoencoder MSE between reconstructed and input samples for chamber layer 9 (left) and chamber layer 3 (right).

Pol et al., 10 Jul 2018 Online Detector Monitoring Using AI
Global strategy: Scope & Method

- simultaneous use of all the chambers data;
- the position impacts expected occupancy pattern;
- with autoencoders, a compressed representation of chamber data is learned;
- when the bottleneck of the autoencoder is 3-dimensional one can visually inspect those representation.
Global strategy: Results

- the representations **cluster** depending on their position in the CMS detector (left: distance from the interaction point);
- the same chamber **changes** representation when problem occurs (right).

Compressed representations of the chamber-level data
Concluding:

- the local approach has satisfactory performance and was successfully **implemented** in production (the DT experts still test it);
- the proposed strategy is **generic** enough to be applicable to other kinds of CMS muon chambers, as well as to other sub-detectors.

Future work:

- there is other sub-detector efforts to apply similar strategy (HCAL, ECAL)*;
- addresses next monitoring pattern: failure detection in time evolution of sequential stream of DQM data.

* See: "Improving the use of data quality metadata via a partnership of technologies and resources between the CMS experiment at CERN and industry" (Track 1: Tuesday, 12:15) and "Monitoring tools for the CMS muon detector: present workflows and future automation" (Poster Session: Tuesday)
References

Backup: Autoencoder architecture