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Data Quality Monitoring (DQM)
• guarantees high-quality data for physics analyses:

• online monitoring: live feedback during data acquisition;

• offline monitoring: certify the data quality using offline processing;

• online DQM identifies emerging problems:

• comparison to reference distributions;

• comparison supported by predefined tests;

• tests perform data reduction tasks (summary plots with alarms);

• shifters and detector experts inspect histograms to spot problems;

• tests designed to identify known failure modes;

• challenges of online monitoring, relevant to machine learning:

• the latency of the evaluation process;

• absolute normalization of the histograms is not possible;

• granularity of the problems to spot;

• no availability of the ground truth (labels).

Details on the infrastructure used for this Data Quality Monitoring (DQM) are given in [1].
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Why machine learning?

The aim of this project is to automatize the CMS online
DQM (with machine learning), solving or reducing many of the
problems below. The goal is to improve the current protocol.

• Latency: human intervention and thresholds require sufficient statistics.

• Volume budget: amount of data a human can process in a finite time.

• Static thresholds don’t scale: assumptions on potential failure scenarios.

• Human driven decision process: alarms based on shifter judgment.

• Changing running conditions: reference samples change over time.

• Manpower: the effort to train a shifter and maintain instructions.
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Test case: Drift Tube (DT) hit occupancy

Test case: data recorded by the DT chambers of the muon spectrometer.

• Monitoring pattern: histogram-based image classification.

• Hit occupancy contains the total number of electronic hits at each
readout channel. It is a 2-dimensional array organized along layer (row)
and channel (column) indices:
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• At any time CMS DQM visualizes 250 DT occupancy histograms.

• Current test summarizes alarms in one plot based on the fraction of
dead cells (zero hits).
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Test case: Drift Tube (DT) hit occupancy

• Expected: small variance of hit occupancy between neighboring channels.
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• Anomalous: noisy or inefficient area (example: low occupancy across all
the 12 rows).
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Approaches to the anomaly detection
• exploit the geographical information and detect different types of

anomalies at different scales (ranging from a few channels to collective
behaviors of big portion of the DT system);

Pipeline of fault detection:

• local: data collected in each chamber layer are treated independently
from the other layers;

• regional: extend the local approach to account for intra-chamber
problems; simultaneously consider all layers in a chamber, but each
chamber independently from the others;

• global: simultaneously use the information of all the chambers for a
given acquisition run; the position of the chamber in the CMS detector
impacts expected occupancy distribution of the channel hits.

LOCAL REGIONAL GLOBAL
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Dataset Preprocessing

The occupancy 21000 occupancy histograms were preprocessed.

• Standardization of the chamber data: the number of channels in a
chamber layer varies. Force fixed-input dimensionality with a
row-by-row one dimensional linear interpolation.
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Dataset Preprocessing

• Smoothing: according to CMS DT experts isolated misbehaving channels
are not considered a problem. One dimensional median filter is applied.

0 10 20 30 40 50
Channel

1

5

9

La
ye

r

co
un

ts

CMS

0

104
Raw Occupancy, Run: 272011, W: 1.0, St: 1.0, Sec: 6.0

0 10 20 30 40 50
Channel

1

5

9

La
ye

r

a.
u.

CMS
92.00

Smoothed Occupancy, Run: 272011, W: 1.0, St: 1.0, Sec: 6.0
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• Normalization: the need for comparing data across chambers or across
runs; the input data set depends on the integration time and on the
LHC beam configuration and intensity.

Pol et al.,10 Jul 2018 Online Detector Monitoring Using AI 8



Local strategy: Scope & Method

• filters out most of the anomalies;

• assessing the (mis)behavior with high-granularity (few channels);

• data collected in each muon chamber layer are treated independently
from the others to detect intra-layer problems;

• labels were provided by experts: 5668 good and 612 bad (∼ 0.1
positives).

In this experiment, we compare the performances of the following:

• unsupervised with a simple statistical indicator (variance within the
muon chamber layer), and an image processing technique, (maximum
value of the vector obtained by applying a variant of an edge detection
Sobel filter [2]: Si = max(

[
−1 0 1

]
∗ Xi ));

• semi-supervised learning, with Isolation Forest [3, 4], and µ-SVM [5]
(both validated with 5 stratified folds);

• supervised learning, with a fully connected shallow neural network
(SNN), and a convolutional neural network (CNN) [6].
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Local strategy: CNN details
• rectified linear units and softmax as activations, trained with

Keras/TensorFlow, Adam optimizer and early stopping (patience = 32
epochs);

• class weight to account for class imbalance; the weight λ for a sample in

class ψ ∈ {0, 1} is: λψ = |S|
2·|Sψ|

,S = S0 ∪ S1.

0 250 500 750 1000 1250 1500
Epoch

10−1

C
ro
ss
­e
nt
ro
py Training­data­set

 alidation­data­set

Outputs

8 hidden units

90 hidden units

10@9x1 feature maps

10@45x1 feature 
maps

47x1 input

3x1 convolutions

5x1 max pooling

Flatten

Fully connected

Fully connected

Loss function as a function of the number of epochs (left) and architecture of the
CNN model (right)

Pol et al.,10 Jul 2018 Online Detector Monitoring Using AI 10



Local strategy: Results
• convolutional neural network (CNN) outperforms other methods;

• performance of the CNN in low statistics region is different than the
production test.
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Regional strategy: Scope

• extends local strategy to filter out anomalies not seen by the previous
approach;

• accounts for intra-chamber problems: simultaneously consider all layers
in a chamber;

• the occupancy pattern within a chamber depends on the layer (row)
information;

• example of use: identify layers with low efficiency (lower voltage).
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Regional strategy: Method

• semi-supervised autoencoder [7] variations:

• bottleneck,

• denoising,

• sparse,

• convolutional;

• all chambers without any chamber layers labeled as faulty by the CNN
local model were used for training (8424 matrices);

• all models minimize the mean squared error ε of input x and
reconstructed ẍ samples: ε = 1

ij

∑
i,j(x

k
i,j − ẍk

i,j)
2;

• a model will have a high reconstruction error ε on samples with voltage
problem.
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Regional strategy: Results
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Global strategy: Scope & Method

• simultaneous use of all the chambers data;

• the position impacts expected occupancy pattern;

• with autoencoders, a compressed representation of chamber data is
learned;

• when the bottleneck of the autoencoder is 3-dimensional one can visually
inspect those representation.
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Global strategy: Results

• the representations cluster depending on their position in the CMS
detector (left: distance from the interaction point);

• the same chamber changes representation when problem occurs (right).
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Outlook

Concluding:

• the local approach has satisfactory performance and was successfully
implemented in production (the DT experts still test it);

• the proposed strategy is generic enough to be applicable to other kinds
of CMS muon chambers, as well as to other sub-detectors.

Future work:

• there is other sub-detector efforts to apply similar strategy (HCAL,
ECAL)*;

• addresses next monitoring pattern: failure detection in time evolution of
sequential stream of DQM data.

* See: ”Improving the use of data quality metadata via a partnership of technologies
and resources between the CMS experiment at CERN and industry” (Track 1:
Tuesday, 12:15) and ”Monitoring tools for the CMS muon detector: present workflows
and future automation” (Poster Session: Tuesday)
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Backup: Autoencoder architecture
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