

High-Precision Tracking Algorithm for Mass Reconstruction of Heavy Fragments in R3B Experiment at FAIR

D. Kresan, M. Al-Turany, M. Heil GSI, Darmstadt, Germany

23rd International Conference on Computing in High Energy and Nuclear Physics 9 - 13 July 2018 National Palace of Culture Sofia, Bulgaria

Facility for Antiproton and Ion Research

in Darmstadt, Germany

Construction site April 2018

Reactions with Relativistic Radioactive Beams - R³B

http://www.gsi.de/r3b

- Properties of exotic nuclei far off stability
- Study nuclear structure and dynamics
- Astrophysical aspects
- Technical applications

Fragment tracking arm

Measurement of the whole final state is needed to reconstruct the properties of a reaction: neutrons, protons, reaction fragment

Small effects in transversal relative energy on top of Lorentz boost

Momentum resolution in the order of 10⁻³ required

Clean separation of heavy isotopes

CHEP2018, Sofia, Bulgaria

D. Kresan Tracking Algorithm for R3B Experiment at FAIR

Challenges compared to HEP experiments

- Variety of different setups changes in configuration and detector types
- Due to moderate beam energies and high charge, energy loss in detector layers impacts velocity (and thus trajectory) significantly. Has to be corrected for in the reconstruction
- Highly non-homogeneous magnetic dipole field
- No position measurement inside of field

Tracking algorithm

Depending on the setup:

- I. 2 detectors before the magnet, 1 after forward fit
- II. 1 detector before the magnet, 2 after backward fit
- III. 2 before, 2 after both fits sequentially

No improvement if both fits are applied in cases I. and II.

Simplified geometry description

No sophisticated stepping navigation Current approximation model: 1 layer per detector

- Simplified geometry description
- Propagation in magnetic field

Highly non-homogeneous dipole field Step-like propagation based on Runge Kutta 4^{-th} order method (implemented in the FairRoot framework <u>https://fairroot.gsi.de</u>)

- Simplified geometry description
- Propagation in magnetic field
- Energy loss calculation

Energy loss calculation

Bethe Bloch formula with density effect

Weak point: mean excitation energy

Test if can be fitted during alignment with known beam

- Simplified geometry description
- Propagation in magnetic field
- Energy loss calculation
- Forward and backward propagation

- Simplified geometry description
- Propagation in magnetic field
- Energy loss calculation
- Forward and backward propagation
- Mass fit with Minuit2 from ROOT

Simulation results

3 Sn isotopes, 1 ion per event 3.000 events Geant4 $p_{LAB} = 1,4$ AGeV backward tracking

Simulation results

3 Sn isotopes, 1 ion per event 3.000 events Geant4 pLAB = 1,4 AGeV backward tracking

Simulation results

D. Kresan Tracking Algorithm for R3B Experiment at FAIR

Performance

- Total reconstruction time of 150 ms / event
 - Combinatorics penalty: 12.8 candidates / event
 - Single fit performance: 11.6 ms / track
- 2000 lines of code

- Tracker code is integrated into R3BRoot framework <u>https://www.r3broot.gsi.de</u>
- Single implementation is used to analyze experimental and simulated data

Ready for data taking this autumn

- The R3B experiment at FAIR is equipped with the software algorithm for the mass reconstruction using heavy-ion tracking arm
- Required accuracy of 2x10⁻³ in mass reconstruction achieved
- The implementation is modular, compact, straightforward to validate and can be exported

 Further effort needed in timing optimization and in development of automated alignment procedure

Geometry example - 1 detector plane

No recompilation needed when changing geometry