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Data Events
• Particle detection = record physics 

quantities (energy, flight path) of particles 

produced in a collision

- Quantities measured from the interaction 

of particles and the different detector 

components

• 100 Million individual measurements

- All measurements of a collision together 

are called event
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Event Reconstruction
• Detector signals (and equivalent 

simulated signals) need to be 

reconstructed to learn about the 

particles that produced them

• The reconstructed events are then 

used for analysis
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Experimental Particle Physics from Computing Perspective
• Detect particle interactions (data), 

compare with theory predictions 
(simulation)
- Black dots: recorded data

- Blue shape: simulation 

- Red shape: simulation of new theory (in 

this case the Higgs)
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CMS Data Volume @ HL-LHC
• Extract physics results will require 

to handle/analyze a lot more data
- must trim inefficiencies

• Explore industry technologies as 
suitable candidates for user 
analysis
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CMS Big Data Project
• Group created end of 2015

- collaboration between FNAL, Diana-HEP, and CERN-IT

- website: https://cms-big-data.github.io

• Rapidly expanding:

- Vanderbilt and Padova joined last year

• CERN Openlab enables partnership with industry:

- CERN Openlab/Intel project called "CMS Data Reduction Facility"

- Project includes CERN fellow supporting the development and testing of the reduction facility

- Intel actively taking part in project

- Sponsoring of CERN fellow included in the project

Thanks to Intel and Cofluent for the support over these years
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https://cms-big-data.github.io


CHEP 2016: Proof of Principle 
• Usability Study using Apache 

Spark:
- Analyzer code in Scala

- Input converted in Avro: https://

github.com/diana-hep/rootconverter

• Improved user experience with 
optimized bookkeeping  
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arXiv:1711.00375

https://github.com/diana-hep/rootconverter
https://github.com/diana-hep/rootconverter


ACAT 2017: Steps Forward 
Several technical advancements:

• stability to read root files in Spark: https://github.com/diana-hep/spark-root, 
eliminating the need to convert in a more suitable format

• Capability to read input files remotely using XRootD (e.g. from EOS at 
CERN): https://github.com/cerndb/hadoop-xrootd , eliminating the need to 
store files on HDFS
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arXiv:1703.04171

https://github.com/diana-hep/spark-root
https://gitlab.cern.ch/awg/hadoop-xrootd-connector


Outline
• Scalability tests and first performance measurements
- Test the capability to reduce 1 PB of data to 1 TB in less than five hours with the new tools 

developed by CERN-IT

• Review of real analysis use cases in Apache Spark
- Tools developed by CERN IT applied at Padova and Vanderbilt to real physics analysis

- Usability test and current limitation

• What’s next
- Goal for the next year

�14



Scalability Tests, Infrastructure and Workload
• Spark cluster:
- analytix @ CERN: shared infrastructure with ~1300 cores, 7 TB RAM

• Storage:
- HDFS and Remote EOS Public/UAT

• Simple physics analysis use case is applied to select events and reduce the 
datasets
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Scalability Test/1
Increasing the input size while maintaining the same amount of resources 
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Scalability Test/2
Increasing the resources while maintaining the same input size (for 2:1 vcore-executor ratio)
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Numberof	
Executors/Cores

Total
Memory:

Runtime:

74/148 0.5	TB 81m

148/296 1	TB 53m

222/444 1.5	TB 52m

296/592 2	TB 51m

370/740 2.5	TB 50m

444/888 3	TB 50m
Memory (TB)



Scalability Test/3
Comparing EOS Public, EOS UAT, and HDFS (191, 6, and 38 nodes respectively)
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Scalability Test/4
Understanding the bottlenecks - high network load
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Observations
• We can reduce Data with 72 TB/h

- Current bottleneck: network throughput from remote storage to Spark cluster 

- We measured up to 20 Gigabytes/s throughput to EOS Public

• These results are about a factor 3 from our original goal of reducing 1 PB to 5 hours

- Reasonably done with more hardware or software optimizations (Work In Progress)

• Workload optimization profited from cooperation with Intel with Intel CoFluent Technology 

- For this particular job, optimal results were obtained at the 2:1 vcore-executor ratio
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Analysis Use-case @ Vanderbilt/Padova
Analysis workflow:

• Load standard ROOT files as DataFrames 

(DFs)

• Open files over XRootD

• Use Spark to transform DFs

• Aggregate DFs into histograms

• Produce plots, tables, etc.. from histograms
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Tools used:

• Spark-ROOT - ROOT in Spark

• Hadoop-XRootD - XRootD FS support for 

Hadoop

• Histogrammar - Data aggregation

• Matplotlib - Python-based plotting

Identical physics use cases, using similar strategy, same tools, 

but different infrastructure



Usability Test
• Make a first-year CS undergraduate student run the workflow
- No knowledge of physics whatsoever, limited computing knowledge

- Able to make the Vanderbilt workflow run in one day

• Portability
- Run the Padova code at Vanderbilt

- Major showstopper: environment setup

=> need to write sort of a shared library with site configuration towards full 
generalization
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What’s Next: Coffea Development
• Generalized version of the code used so far by Padova/Vanderbilt

- Fully portable (no configuration issues)

- Use-case independent (in principle it already is)

• COmpact Framework For Elaborate Algorithms

• Consist in:

- List of centrally-produced dataset in experiment-specific format needed for analysis => 

coffeabeans

- Custom-made version of the experiment software to produce privately datasets in the 

experiment-specific format => CoffeaGrinder (this step may be needed to add information)

- List of privately/centrally produced dataset in experiment-specific format => coffeapowder

- Apache Spark analysis code => CoffeaMaker

- Reduced datasets/analysis plots => coffeacups

- Interface with the experiment statistical packages => CoffeaDrinker
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Conclusion
• 2016: proof of principle of the usage of big data technologies in HEP analysis
- Limitation have been identified to set the focus for 2017

• 2017: development of new tools
- Spark-root, Hadoop-XRootD connector

• 2018: scalability and usability tests, performance measurements
- Some bottlenecks have been identified

• Scalability test: need to scale up the Spark infrastructure and possibly the network

• Usability test: need to generalize the site configuration 

• 2019: Coffea development
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Current Analysis Workflow
• Input:

- Centrally produced output of reconstruction software, reduced content 

optimized for analysis

- Apply updated CMS reconstruction recipes

- Too big for interactive analysis

• Ntupling:

- Convert into format suited for interactive analysis 

- Still too big for interactive analysis

• Skimming & Slimming:

- dropping events/branches in a disk-to-disk copy

• Filtering & Pruning:

- selectively reading events/branches into memory
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CMS Data Reduction Facility
- CERN openlab / Intel project

- Demonstrate reduction capabilities 

producing analysis ntuples using 

Apache Spark

- Goal: reduce 1 PB input to 1 TB 

output in 5 hours (CERN Openlab/

Intel project)
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CHEP 2016: Proof of Principle 
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• Not changing the analysis 
workflow, optimizing the 
bookkeeping
- Apache spark

- Analyzer code in Scala

- Input converted in Avro: https://

github.com/diana-hep/rootconverter, 

stored on the HDFS

https://github.com/diana-hep/rootconverter
https://github.com/diana-hep/rootconverter
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