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Data Events

* Particle detection = record physics

CMS DETECTOR STEEL RETURN YOKE
Total wei?,ht : 14,000 tonnes 12,500 tonnes S}LICON TRACKER? . . .
Overlllengh 1287 Naconcs (e 300wt o guantities (energy, flight path) of particles

Magnetic field :38T

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

produced in a collision

MUON CHAMBERS

- = ) Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
. 4 Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers

- Quantities measured from the interaction

PRESHOWER
Silicon strips ~16m* ~137,000 channels

of particles and the different detector

FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

components

100 Million individual measurements

CRYSTAL
ELECTROMAGNETIC

CALORIMETER (ECAL)
~76,000 scintillating PbWO, crystals

- All measurements of a collision together

are called event

HADRON CALORIMETER (HCAL)
Brass + Plastic scintillator ~7,000 channels
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CMS Experiment at the LHC, CERN
Data recorded: 2012-May-27 23:35:47.27 %30 GMT
Run/Event: 195099 / 137440354
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Event Reconstruction

» Detector signals (and equivalent

simulated signals) need to be

reconstructed to learn about the

particles that produced them

| Il * The reconstructed events are then

used for analysis

Calorimeter

Calorimeter Superconducting
Solenoid Iron return yoke intersperse

with muen chamlbars
Muon Electron Charged hadron (e.g. pion)
- =« Neutral hadron (e.g. neutron) -.... Photon
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DAQ Software

Detector & &
Trigger Computing
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Experimental Particle Physics from Computing Perspective

CMS Preliminary
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* Detect particle interactions (data),
compare with theory predictions
(simulation)

- Black dots: recorded data
- Blue shape: simulation

- Red shape: simulation of new theory (in

this case the Higgs)
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Detector
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Detector

Data
Reconstruction Analysis
Algorithms Software »

al

Central Chaotic
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CMS Data Volume @ HL-LHC
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CMS Big Data Project

* Group created end of 2015
- collaboration between FNAL, Diana-HEP, and CERN-IT

- website: https://cms-big-data.qgithub.io

* Rapidly expanding:
- Vanderbilt and Padova joined last year
* CERN Openlab enables partnership with industry:
- CERN Openlab/Intel project called "CMS Data Reduction Facility"
- Project includes CERN fellow supporting the development and testing of the reduction facility

- Intel actively taking part in project

- Sponsoring of CERN fellow included in the project

Thanks to Intel and Cofluent for the support over these years

2t Fermilab
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https://cms-big-data.github.io

CHEP 2016: Proof of Principle arXiv:1711.00375
» Usability Study using Apache

Recorded and simulated Events centrally
produced Analysis Object Data (MINIAOD)

Spark:

o
'F’E ~4 X year
- Analyzer code in Scala =\ >
BACON group ntuples BACON Avro
; _ ) c 2 Convertonce 2 g
- Input converted in Avro: https:// - 1 x week . E Scala code
. . 2 5 \/ = 7 \/ OnSpark
github.com/diana-hep/rootconverter ——
BACON Bits analysis ntuples Parquet
* Improved user experience with s || S % {}
< O < ©
z g % machine learning
optimized bookkeeping 3 A
plots and tables
& Fermilab
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https://github.com/diana-hep/rootconverter
https://github.com/diana-hep/rootconverter

ACAT 2017: Steps Forward arXiv:1703.04171

Several technical advancements:

» stability to read root files in Spark: https://github.com/diana-hep/spark-root,

eliminating the need to convert in a more suitable format

» Capability to read input files remotely using XRootD (e.g. from EOS at

CERN): https://github.com/cerndb/hadoop-xrootd , eliminating the need to
store files on HDFS

2= Fermilab
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https://github.com/diana-hep/spark-root
https://gitlab.cern.ch/awg/hadoop-xrootd-connector

Outline

» Scalability tests and first performance measurements

- Test the capability to reduce 1 PB of data to 1 TB in less than five hours with the new tools
developed by CERN-IT

* Review of real analysis use cases in Apache Spark

- Tools developed by CERN IT applied at Padova and Vanderbilt to real physics analysis

- Usability test and current limitation
* What's next

- Goal for the next year

2% Fermilab
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Scalability Tests, Infrastructure and Workload

» Spark cluster:
- analytix @ CERN: shared infrastructure with ~1300 cores, 7 TB RAM
» Storage:
- HDFS and Remote EOS Public/UAT
» Simple physics analysis use case is applied to select events and reduce the

datasets

2= Fermilab
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Scalability Test/1

Increasing the input size while maintaining the same amount of resources
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Input Time
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Initial configuration: 407 executors, 2 vcores per executor, 7 GB per executor
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Time (minuteS)

Scalability Test/2

Increasing the resources while maintaining the same input size (for 2:1 vcore-executor ratio)
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Performance for 20 TB input size in EOS Public
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Scalability Test/3

Comparing EOS Public, EOS UAT, and HDFS (191, 6, and 38 nodes respectively)

Performancefor 20 TB input size
180

160 Numberof | Runtime for Runtime for | Runtime for
140 JE Executors/ | EOS Public: EOS UAT: HDFS:
7 120 VCores:
5 100 ——EOS Public 111/222 81m 153m 41m
S & ——EOS UAT 222/444  52m 146m 35m
£ ——HDFS
= 60 296/592 51m 144m 33m
40 TTee— 407/814 50m 140m 29m
20
0
222 CORES 444 CORES 592 CORES 814 CORES
2= Fermilab
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Scalability Test/4

Understanding the bottlenecks - high network load

Corest | EOSPublic | EOS UAT
20 //— 222 vcores 15 Gbytes/s 6 Gbytes/s
15

444 vcores 19 Gbytes/s 7.5 Gbytes/s

Network Average Utilization for 20 TB input size
25

10

592 vcores 21 Gbytes/s 7.5 Gbytes/s

Speed (GB per second)

814 vcores 21 Gbytes/s 7.5 Gbytes/s

222 CORES 444 CORES 592 CORES 814 CORES
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Observations

-+ We can reduce Data with 72 TB/h
- Current bottleneck: network throughput from remote storage to Spark cluster
- We measured up to 20 Gigabytes/s throughput to EOS Public
- These results are about a factor 3 from our original goal of reducing 1 PB to 5 hours
- Reasonably done with more hardware or software optimizations (Work In Progress)
- Workload optimization profited from cooperation with Intel with Intel CoFluent Technology

- For this particular job, optimal results were obtained at the 2:1 vcore-executor ratio

2% Fermilab
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Analysis Use-case @ Vanderbilt/Padova

Analysis workflow: Tools used:
* Load standard ROOQOT files as DataFrames * Spark-ROQOT - ROOT in Spark
(DFs) » Hadoop-XRootD - XRootD FS support for
* Open files over XRootD Hadoop
* Use Spark to transform DFs * Histogrammar - Data aggregation
* Aggregate DFs into histograms * Matplotlib - Python-based plotting

* Produce plots, tables, etc.. from histograms

ldentical physics use cases, using similar strategy, same tools,
but different infrastructure

2= Fermilab
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Usability Test

» Make a first-year CS undergraduate student run the workflow

- No knowledge of physics whatsoever, limited computing knowledge

- Able to make the Vanderbilt workflow run in one day

* Portability

- Run the Padova code at Vanderbilt

- Major showstopper: environment setup

=> need to write sort of a shared library with site configuration towards full

generalization

2= Fermilab
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What’s Next: Coffea Development

23

Generalized version of the code used so far by Padova/Vanderbilt

- Fully portable (no configuration issues)

- Use-case independent (in principle it already is)

COmpact Framework For Elaborate Algorithms

Consist in:

List of centrally-produced dataset in experiment-specific format needed for analysis =>

coffeabeans

Custom-made version of the experiment software to produce privately datasets in the

experiment-specific format => CoffeaGrinder (this step may be needed to add information)
List of privately/centrally produced dataset in experiment-specific format => coffeapowder
Apache Spark analysis code => CoffeaMaker

Reduced datasets/analysis plots => coffeacups

Interface with the experiment statistical packages => CoffeaDrinker
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Conclusion

» 2016: proof of principle of the usage of big data technologies in HEP analysis

Wiz

« 2018: scalability and usability tests, performance measurements

- Limitation have been identified to set the focus for 2017

» 2017: development of new tools

- Spark-root, Hadoop-XRootD connector

- Some bottlenecks have been identified
* Scalability test: need to scale up the Spark infrastructure and possibly the network
* Usability test: need to generalize the site configuration

» 2019: Coffea development

2= Fermilab
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Backup

25
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C u r re nt A n a I ys i S WO r kfl OW Recorded and simulated Events centrally

produced Analysis Object Data (MINIAOD)

N

Group ntuples

* Input:

~4 x year

- Centrally produced output of reconstruction software, reduced content

Ntupling

optimized for analysis

- Apply updated CMS reconstruction recipes

- Too big for interactive analysis

~1 X week

Skimming
&
Slimming

&

Ntupling:

- Convert into format suited for interactive analysis Group analysis ntuples

- Still too big for interactive analysis

every
couple of
days

Skimming & Slimming:

machine learning
technique

%

plots and tables

- dropping events/branches in a disk-to-disk copy

Filtering & Pruning:

Cut-N-Count Analysis
several times a day

<

Multi-Variate Analysis

several
times a
day

- selectively reading events/branches into memory

2% Fermilab
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CMS Data Reduction Facility

- CERN openlab / Intel project

Recorded and simulated Events centrally
produced Analysis Object Data (MINIAOD)

- Demonstrate reduction capabilities

Ntupling

~4 X year

N

producing analysis ntuples using

Group ntuples

Apache Spark
- Goal: reduce 1 PB inputto 1 TB

~1 X week

Skimming
&
Slimming

&

Group analysis ntuples

output in 5 hours (CERN Openlab/

Intel project)

every
couple of
days

v

machine learning
technique

several times a day

Cut-N-Count Analysis
Multi-Variate Analysis

>
0
©

several
times a

%

N2

plots and tables

27

CMS Data

Reduction
Facility
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CHEP 2016: Proof of Principle

* Not changing the analysis

Recorded and simulated Events centrally
produced Analysis Object Data (MINIAOD)

workflow, optimizing the

o
S ~4 X year
bookkeeping Y >
BACON group ntuples BACON Avro
- Apache spark = £ 1 % week romeriones £ £ Scala code
€ E € E
| 2z \/ = 3 \/ onsSpark
- Analyzer COde |n SCa|a BACON Bits analysis ntuples Parquet
- Input converted in Avro: https:// S . {} 228
< D < “
= g % machine learnin
github.com/diana-hep/rootconverter, 3 8 F | omae
= : = [] =c.
stored on the HDFS 3 \/ 2 @ §E®
plots and tables
2& Fermilab
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https://github.com/diana-hep/rootconverter
https://github.com/diana-hep/rootconverter

// Reference the whole dataset}not individual files)
val mcsample = avrordd("hdfs://path/to/mcsample/*.avro") <= |nput

Two loops over // First }]Jass (and cache for later)

file entries, mcsample.persist() .

parallel jobs in { val mc_sumOfWeights = mcsample.map(_.GenInfo.weight).sum (= Sym of Weights for Simulation
Spark across // Second pass on data in cluster's memor]{I Main Event
cluster val result = mcsample.filter(cuts).map(toNtuple( , mc sumOfWeights, mc_XseC)) o Selection

// Save as ntuple
result.toDF().write.parquet ("hdfs://path/to/mcsample ntuple") Output

Output ntuple is used for analysis e.qg: plots, fits, tables

# Bring the ntuple in as a DataFrame Output contains information of.

ntuple = spark.read.parquet("hdfs://path/to/mcsample ntuple"”) <= *ODbject (e.g. Muon/Jet)
e Event (e.q. Luminosity)

ntuple.select("mass").show () information

t

Physics plots!

2= Fermilab
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MiniAOD Analysis Ntuple

event

event
event event
Te i
Id
NMiian Al
Miion m muom_pt
Muon n muoni m
ot 1 muon2_pt
m______ — |
eta dil muon2_m
¢ Dphi o dimuon_m
charge photon_pt
Photon
Photon
ot
eta
olal
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from PandaCore.Tools.Misc import *
from re import sub

metTrigger='(trigger&l)!=0"'
eleTrigger="'(trigger&2)!=0"'
phoTrigger="'(trigger&d)!=0"'

metFilter="metFilter==1 && egmFilter==1"

presel = 'nFatjet==1 && f£j1Pt>200 && nTau==0 && Sum$(jetPt>30 && jetlIso)<2’

'signal' : tAND(metFilter, tAND(presel, 'nLooselep==0 && nLooseElectron==0 && nLoosePhoton==(0 && pfmet>200 && dphipfmet>0.4')),

cuts = {

'mn’ : tAND(metFilter,tAND(presel, 'nLoosePhoton==0 && nTau==0 &&

'en' : tAND(metFilter,tAND(presel, 'nLoosePhoton==0 && nTau==0 &&
pfUWmag>200 && dphipfUW>0.4 && mT<160')),

"zmm' : tAND(metFilter, tAND(presel, 'pfUZmag>200 && dphipfUZ>0.4 &&
diLepMass<120')),

'zee' : tAND(metFilter, tAND(presel, 'pfUZmag>200 && dphipfUZ>0.4 &&
diLepMass<120')),
}

for r in ['mn','en']):
cuts[ 'w'+r] = tAND(cuts[r], 'isojetNBtags==0"')
cuts[ 't'+r) = tAND(cuts[r], 'isojetNBtags==1")

for r in ['signal','zmm',6 "zee']:
cuts[r] = tAND(cuts[r], 'isojetNBtags==0")
for r in ['signal','wmn','tmn','wen', ' 'ten','zmm', 'zee']):
cuts[r] = tAND(cuts[r],'fjlDoubleCSV>0.75")
cuts[r+' fail'] = tAND(cuts[r], ' 'fjlDoubleCSV<=0.75")

weights = {

nLooselep==1 && looseleplIsTight==1 && abs(looselLeplPdgld)==13 && pfUWmag>200 && dphipfUwW>0.4 && mT<160')),
nLooselep==1 && looselepllIsTight==1 && looseLeplIsHLTSafe==1 && abs(looseleplPdgld)==11 && pfmet>50 &&

nLooseElectron==0 && nLoosePhoton==0 && nTau==0 && nLooseMuon==2 && nTightLep>0 && 60<dilepMass &&

nLooseMuon==0 && nLoosePhoton==0 && nTau==0 && nLooseElectron==2 && nTightLep>0 && 60<dilepMass &&

'signal’ : '$f*sf pu*sf tt*normalizedWeight*sf lepID*sf lepIso*sf lepTrack*sf ewkV*sf gcdV*sf metTrig*sf btag0’',
"top' : '"$f*sf pu*sf tt*normalizedWeight*sf lepID*sf lepIso*sf lepTrack*sf ewkV*sf gcdV*sf btagl’',
'w' : '"$f*sf pu*sf tt*normalizedWeight*sf lepID*sf lepIso*sf lepTrack*sf ewkV*sf gcdV*sf btagl’',
'z’ : '$f*sf pu*sf tt*normalizedWeight*sf lepID*sf lepIso*sf lepTrack*sf ewkV*sf gcdV*sf btagl’',
# 'photon' : '$f*sf pu*normalizedWeight*sf ewkV*sf gcdV*sf pho*sf phoTrig *sf gqcdV2j*sf btag0', # add the additional 2-jet kfactor

}
weights['gqed'] = weights['signal']
weights[ 'signal fail'] = weights['signal']

31
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