
The CMS Big Data Project:
M. Cremonesi, O. Gutsche, B. Jayatilaka, J. Kowalkowski, S. Sehrish [FNAL]
L. Canali, V. Dimakopoulos, M. Girone, V. Khristenko, E. Motesnitsalis [CERN-IT]
S.-Y. Hoh, J. Pazzini, M. Zanetti [Padova]
P. Elmer, J. Pivarski, A. Svyatkovskiy [Princeton]
I. Fisk [Simons Foundation]
A. Melo [Vanderbilt]

CHEP, 10 July 2018

Using Big Data Technologies for HEP Analysis

Data Events
• Particle detection = record physics

quantities (energy, flight path) of particles

produced in a collision

- Quantities measured from the interaction

of particles and the different detector

components

• 100 Million individual measurements

- All measurements of a collision together

are called event

�2

�3

Event Reconstruction
• Detector signals (and equivalent

simulated signals) need to be

reconstructed to learn about the

particles that produced them

• The reconstructed events are then

used for analysis

�4

�5

Detector
DAQ
&

Trigger

Software
&

Computing

Experimental Particle Physics from Computing Perspective
• Detect particle interactions (data),

compare with theory predictions
(simulation)
- Black dots: recorded data

- Blue shape: simulation

- Red shape: simulation of new theory (in

this case the Higgs)

�6

�7

Detector
Data

Simulation

Reconstruction
Algorithms

Analysis
Software

�8

Detector
Data

Simulation

Reconstruction
Algorithms

Analysis
Software

Central Chaotic

�9

CMS Data Volume @ HL-LHC
• Extract physics results will require

to handle/analyze a lot more data
- must trim inefficiencies

• Explore industry technologies as
suitable candidates for user
analysis

�10

20k

CMS

CMS Big Data Project
• Group created end of 2015

- collaboration between FNAL, Diana-HEP, and CERN-IT

- website: https://cms-big-data.github.io

• Rapidly expanding:

- Vanderbilt and Padova joined last year

• CERN Openlab enables partnership with industry:

- CERN Openlab/Intel project called "CMS Data Reduction Facility"

- Project includes CERN fellow supporting the development and testing of the reduction facility

- Intel actively taking part in project

- Sponsoring of CERN fellow included in the project

Thanks to Intel and Cofluent for the support over these years

�11

https://cms-big-data.github.io

CHEP 2016: Proof of Principle
• Usability Study using Apache

Spark:
- Analyzer code in Scala

- Input converted in Avro: https://

github.com/diana-hep/rootconverter

• Improved user experience with
optimized bookkeeping

�12

arXiv:1711.00375

https://github.com/diana-hep/rootconverter
https://github.com/diana-hep/rootconverter

ACAT 2017: Steps Forward
Several technical advancements:

• stability to read root files in Spark: https://github.com/diana-hep/spark-root,
eliminating the need to convert in a more suitable format

• Capability to read input files remotely using XRootD (e.g. from EOS at
CERN): https://github.com/cerndb/hadoop-xrootd , eliminating the need to
store files on HDFS

�13

arXiv:1703.04171

https://github.com/diana-hep/spark-root
https://gitlab.cern.ch/awg/hadoop-xrootd-connector

Outline
• Scalability tests and first performance measurements
- Test the capability to reduce 1 PB of data to 1 TB in less than five hours with the new tools

developed by CERN-IT

• Review of real analysis use cases in Apache Spark
- Tools developed by CERN IT applied at Padova and Vanderbilt to real physics analysis

- Usability test and current limitation

• What’s next
- Goal for the next year

�14

Scalability Tests, Infrastructure and Workload
• Spark cluster:
- analytix @ CERN: shared infrastructure with ~1300 cores, 7 TB RAM

• Storage:
- HDFS and Remote EOS Public/UAT

• Simple physics analysis use case is applied to select events and reduce the
datasets

�15

Scalability Test/1
Increasing the input size while maintaining the same amount of resources

�16

Input	
Data

Time	
for	EOS	Public

22	TB 58m
44	TB 83m
66	TB 149m
88	TB 180m
110	TB 212m0

50

100

150

200

250

22	TB 44	TB 66	TB 88	TB 110	TB

Ti
m
e	
(m

in
ut
es
)

Performance	for	814	cores	in	YARN

Initial configuration: 407 executors, 2 vcores per executor, 7 GB per executor

Input size

0

10

20

30

40

50

60

70

80

90

0.5 1 1.5 2 2.5 3

Ti
m
e	
(m

in
ut
eS
)

Performance	for	20	TB	input	size	in	EOS	Public	

Scalability Test/2
Increasing the resources while maintaining the same input size (for 2:1 vcore-executor ratio)

�17

Numberof	
Executors/Cores

Total
Memory:

Runtime:

74/148 0.5	TB 81m

148/296 1	TB 53m

222/444 1.5	TB 52m

296/592 2	TB 51m

370/740 2.5	TB 50m

444/888 3	TB 50m
Memory (TB)

Scalability Test/3
Comparing EOS Public, EOS UAT, and HDFS (191, 6, and 38 nodes respectively)

�18

0

20

40

60

80

100

120

140

160

180

222	CORES 444	CORES 592	CORES 814	CORES

Ti
m
e	
(m

in
ut
eS
)

Performance	for	20	TB	input	size

EOS	Public

EOS	UAT

HDFS

Numberof	
Executors/
VCores:

Runtime for
EOS	Public:

Runtime	for	
EOS UAT:

Runtime for	
HDFS:

111/222 81m 153m 41m
222/444 52m 146m 35m
296/592 51m 144m 33m
407/814 50m 140m 29m

Scalability Test/4
Understanding the bottlenecks - high network load

�19

0

5

10

15

20

25

222	CORES 444	CORES 592	CORES 814	CORES

Sp
ee
d	
	(G

B	
pe
r	
se
co
nd

)

Network	Average	Utilization	for	20	TB	input	 size

Cores: EOS	Public EOS	UAT

222	vcores 15	Gbytes/s 6	Gbytes/s

444	vcores 19	Gbytes/s 7.5	Gbytes/s

592	vcores 21	Gbytes/s 7.5	Gbytes/s

814	vcores 21	Gbytes/s 7.5	Gbytes/s

Observations
• We can reduce Data with 72 TB/h

- Current bottleneck: network throughput from remote storage to Spark cluster

- We measured up to 20 Gigabytes/s throughput to EOS Public

• These results are about a factor 3 from our original goal of reducing 1 PB to 5 hours

- Reasonably done with more hardware or software optimizations (Work In Progress)

• Workload optimization profited from cooperation with Intel with Intel CoFluent Technology

- For this particular job, optimal results were obtained at the 2:1 vcore-executor ratio

�20

Analysis Use-case @ Vanderbilt/Padova
Analysis workflow:

• Load standard ROOT files as DataFrames

(DFs)

• Open files over XRootD

• Use Spark to transform DFs

• Aggregate DFs into histograms

• Produce plots, tables, etc.. from histograms

�21

Tools used:

• Spark-ROOT - ROOT in Spark

• Hadoop-XRootD - XRootD FS support for

Hadoop

• Histogrammar - Data aggregation

• Matplotlib - Python-based plotting

Identical physics use cases, using similar strategy, same tools,

but different infrastructure

Usability Test
• Make a first-year CS undergraduate student run the workflow
- No knowledge of physics whatsoever, limited computing knowledge

- Able to make the Vanderbilt workflow run in one day

• Portability
- Run the Padova code at Vanderbilt

- Major showstopper: environment setup

=> need to write sort of a shared library with site configuration towards full
generalization

�22

What’s Next: Coffea Development
• Generalized version of the code used so far by Padova/Vanderbilt

- Fully portable (no configuration issues)

- Use-case independent (in principle it already is)

• COmpact Framework For Elaborate Algorithms

• Consist in:

- List of centrally-produced dataset in experiment-specific format needed for analysis =>

coffeabeans

- Custom-made version of the experiment software to produce privately datasets in the

experiment-specific format => CoffeaGrinder (this step may be needed to add information)

- List of privately/centrally produced dataset in experiment-specific format => coffeapowder

- Apache Spark analysis code => CoffeaMaker

- Reduced datasets/analysis plots => coffeacups

- Interface with the experiment statistical packages => CoffeaDrinker

�23

Conclusion
• 2016: proof of principle of the usage of big data technologies in HEP analysis
- Limitation have been identified to set the focus for 2017

• 2017: development of new tools
- Spark-root, Hadoop-XRootD connector

• 2018: scalability and usability tests, performance measurements
- Some bottlenecks have been identified

• Scalability test: need to scale up the Spark infrastructure and possibly the network

• Usability test: need to generalize the site configuration

• 2019: Coffea development

�24

You are here

�25

Backup

Current Analysis Workflow
• Input:

- Centrally produced output of reconstruction software, reduced content

optimized for analysis

- Apply updated CMS reconstruction recipes

- Too big for interactive analysis

• Ntupling:

- Convert into format suited for interactive analysis

- Still too big for interactive analysis

• Skimming & Slimming:

- dropping events/branches in a disk-to-disk copy

• Filtering & Pruning:

- selectively reading events/branches into memory

�26

CMS Data Reduction Facility
- CERN openlab / Intel project

- Demonstrate reduction capabilities

producing analysis ntuples using

Apache Spark

- Goal: reduce 1 PB input to 1 TB

output in 5 hours (CERN Openlab/

Intel project)

�27

CHEP 2016: Proof of Principle

�28

• Not changing the analysis
workflow, optimizing the
bookkeeping
- Apache spark

- Analyzer code in Scala

- Input converted in Avro: https://

github.com/diana-hep/rootconverter,

stored on the HDFS

https://github.com/diana-hep/rootconverter
https://github.com/diana-hep/rootconverter

�29

�30

event
idevent

id
Muon
pt
eta
phi

charge

Muon
pt
eta
phi

charge

Muon
pt
eta
phi

charge

Photon
pt
eta
phi

Photon
pt
eta
phi

MiniAOD

event
id

muon1_pt
muon1_m

dimuon_m

muon2_pt
muon2_m

photon_pt

event
id

muon1_pt
muon1_m

dimuon_m

muon2_pt
muon2_m

photon_pt

Analysis Ntuple

�31

