Boosting Neutral Particles Identification by Boosting Trees: LHCb case

Chekalina Viktoria on behalf of the LHCb Collaboration

NRU Higher School of Economics, Yandex Data School

11 July 2018

4 □ → 4 部 → 4 差 → 4 差 → 差 今 Q ペ 1/12

LHCb PID sub-detectors

- Ring Imaging Cherenkov detectors (RICH)
- Tracking system
- Hadronic and Electromagnetic calorimeters (HCAL and ECAL)
- Muon chambers

Particles

- Charged particles: π , e, μ , K, p
- Neutral particles: π^0 , γ

- Shashlik technology
- 1*1, 2*2, 3*3 module granularities

Problem

- Some π^0 decay into photons before the calorimeter
- \bullet We want to distinguish high energy photons from photons coming from π^0 decays

• Cluster - the group of cells, which show energy deposits where a particle hits the calorimeter

Quality metrics

- Efficiency (recall) on photons number of true recognized photons to all real photons
- Fake rate (at a certain efficiency) on π^0 's
- Receiver operating characteristic (ROC) curve as an independent characteristic of the model, ROC score area under ROC curve
- Flat dependence on energy

Training and validation

- use $B^0 \to K \pi \gamma$ to obtain γ to training
- To prevent classifier from separating particle by energy, we use kinematically similar π^0 from $B^0 \to K\pi\pi^0$
- For stability check, we use $B^0 \to J/\psi K^*$ with $K^* \to K \pi^0$ as an extra π^0 source

Baseline

Definitions

• (x_c, y_c) - coordinates of the cluster center of gravity, e_i - energy of the *i*th cell, (x_i, y_i) - the cell's coordinates.

•
$$S_{xx} = \frac{\sum_{i=1}^{N} e_i(x_i - x_c)^2}{\sum_{i=1}^{N} e_i}, \ S_{yy} = \frac{\sum_{i=1}^{N} e_i(x_i - x_c)^2}{\sum_{i=1}^{N} e_i}, \ S_{xy} = S_{yx} = \frac{\sum_{i=1}^{N} e_i(x_i - x_c)(y_i - y_c)}{\sum_{i=1}^{N} e_i}$$

 E_{seed} - energy of the center seed, E_{cl} - energy in full cluster, E_{snd} - the second largest energy in cells

Baseline approach

LHCb-PUB-2015-016

- Consider 3*3 cluster
- Use "shape" and "asymmetry" properties of the clusters as a features: $\frac{E_{seed}}{E_{cl}}, \frac{E_{seed}+E_{snd}}{E_{cl}},$ $k = \sqrt{\left(1 - 4\frac{S_{xx}S_{yy}-S_{xy}^2}{(S_{xx}+S_{yy})^2}\right)},$ $asym = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}, r_2 = \langle r \rangle = S_{xx} + S_{yy}$ • Use 2-layer TMVA MLP classifier

New approach

- Consider 5*5 cluster
- Use energy in each cell as a feature
- Use several models and look for the best one

イロン 不良 とくほど 不良 とうほう

New approach: Neural Network (NN) classifiers

- We vary the number of layers, the number of units and the way of optimizing
- Neural network classifiers give at most 0.89 as a ROC-score

NN with different architecture based on Adamax (violet) and Adagrad (green) optimizer

New approach: Boosted Tree (BDT) classifiers

- We use LightGBM, XGBoost and CatBoost models
- Different models over the boosted decision tree give the similar results

・ロト ・四ト ・ヨト ・ヨト

3

Results: Monte-Carlo (MC)

Classifiers' responses on different particle types

Performance

ROC curves for the baseline (dashed line) and new method (solid line). Different colors refer to different test samples

イロト イヨト イヨト イヨト

Dependency on transverse energy

• The flat dependency on energy can help to reduce the systematic uncertainties in the physics analysis

Baseline model quality as a function of transverse energy.

BDT model quality as a function of transverse energy.

Conclusions

- We developed a new procedure to separate photons from merged π^0 .
- New approach shows good performance on simulated data. Classifier's quality does not depend on energy.
- Validation on real data requires a thoughtful approach.

Next step: Validating on real data

- It is not trivial to select calibration samples from real data.
- To train and validate we use π^0 's from rare decays. The π^0 from real data have varied energy distributions, which can affect to classifier response.