Fitting and Modeling in ROOT

L. Moneta, A. Tsang, X. Valls (CERN EP-SFT)
Outline

- Introduction
- New developments in TFormula class
- Composition of functions and convolution
- Parallelization via multi-threads and vectorization
- Performance tests
- Conclusions
Introduction: Fitting in ROOT

- Function modeling definition using TF1 and TFormula classes
  - can fit directly ROOT data objects (histograms and graphs)
  - simple and efficient but limited support for complex cases
- Model using RooFit package
  - powerful, can build model of arbitrary complexity
  - support for simultaneous fits
  - automatic normalisation of functions (pdf)
  - can be difficult to use and sometimes performances not optimal
- We will show recent improvements in TF1 and TFormula which make fitting directly in ROOT easier!
TF1 Class in ROOT

- **TF1** is the class for defining parametric functions that can be used for fitting.
- Can support both function defined directly in C++ code or as an expressions (compiled on the fly using Cling JIT).
  - using a C++ functor (e.g. a lambda):
    ```
    auto myfunc = [](double *x, double *p){ return p[0]*sin(p[1]*x[0]);
    TF1 f1("f1",myfunc,xmin,xmax,2);
    ```
  - using an expression (based on TFormula):
    ```
    TF1 f2("f2","[0]*sin([1]*x)", 0., 10.);
    ```
New Formula developments

- Argument parsing
  - improve parsing when defining the functions in Formula

- Function composition
  - support normalised sums of functions
    - e.g. signal + background fits
  - support convolutions

- These new developments make modelling in ROOT much easier
Improved Argument parsing

- Better parameter definitions:
  can set names, define orders, etc..
- **TF1** ("f1","gaus( x,[0..2])+ gaus(x, [3],[4],[2])");
- **TF1**("f1","gaus(x, [Constant],[Mean],[Sigma])");
- Improved support for multi-dimensional functions
  - **TF2** f2("f2","gaus( x+y, [A],[M],[S])");
- Function compositions by concatenating formula expressions
  - **TF1** fs("sigma","[0]*x+[1]");
  - **TF1** f1("f1","gaus(x,[C],[Mean],sigma(x,[A],[B]))");
Normalized Additions

- Many typical HEP fits consists of sums of functions modelling different processes with separate components (e.g. signal + background)
- Fitting often used to determine fractions or number of events for each process
- from number of events -> cross-sections, discovery significances, etc..
- To fit directly for number of events need to normalise the different model functions
  - otherwise can integrate functions afterwards, but difficult to estimate uncertainties due to correlations (e.g. using `TF1::IntegralError`)

- Provide now in ROOT functionality for performing fits with normalised sum:
  - special operator `NSUM` that can be used to create composite `TF1` function objects from formula based functions
  - based on the `TF1NormSum` class, that can be used for compiled functions
Fitting with normalised sums

- Example: Gaussian signal plus exponential background fit
- We define first the background as a double exponential

```cpp
TF1 *expo2 = new TF1("expo2","[Constant]*exp([A0]*x + [A1]*x*x)",110,160);
expo2->SetParameters(-8e-2, 2e-4, 5e5);
histo->Fit("expo2", "L"); // binned Likelihood Fit
```

- we then model the full spectrum summing with a Gaussian representing the signal

```cpp
TF1 *model = new TF1("model","NSUM(expo2, gaus)", 110, 160); // new!
model->SetParameter(0, 1e4); // size of background
model->SetParLimits(1, 0, 1e3); // size of signal
model->SetParLimits(4, 115, 140); // mean
model->SetParLimits(5, .3, 6); // sigma
histo->Fit("model", "L");
```

Note that the functions are normalised in the given range. This is [110,160] in this case.
Convolutions

- The observed measured process results from a theoretical distribution $f(x)$ smeared by a resolution function $g(x)$

\[ (f \ast g)(x) = \int_{-\infty}^{\infty} f(\xi)g(x - \xi)d\xi \]

- Can build in ROOT TF1 function objects representing convolution using the $\texttt{CONV}$ operator

  - Example: Breit-Wigner * Gaussian

```
TF1 *bw = new TF1("bw", "breitwigner", -15, 15);
bw->SetParameters(1, 0, 1);
TF1 *mygausn = new TF1("mygausn", "gausn", -15, 15);
mygausn->SetParameters(1, 0, 1);
TF1 *voigt = new TF1("voigt", "CONV(bw, mygausn)", -15, 15);
```

- Convolutions is performed by using FFT (default) or numerical integration.
- The $\texttt{TF1Convolution}$ class is used internally and can be used for compiled functions
Parallelization

- The computation of the fitting objective function (likelihood, least square function, etc..) is computed in parallel by dividing the data points in n-chunks
- Parallelization is performed using the `TThreadExecutor` class of ROOT
  - task oriented multi-thread Map-Reduce:
    - **Map**: evaluate chunks of the objective functions by parallel
    - **Reduce**: sum all computed contributions
- `TThreadExecutor` provides a very convenient API for multi-threading parallelism in ROOT
  - Map, Reduce, Foreach and chunked mapping with partial reduction
- used also in TMVA (BDT and Deep Neural network training), I/O and RDataFrame
  - see CHEP18 contribution #346
Parallelisation and Vectorization

- Model function is evaluated in vectorised mode when computing the fitting objective function
- organise the input data in vectors (with \texttt{ROOT::Double\_v})
- use vectorised API of \texttt{TF1} and internal function interfaces
- \texttt{TFormula} is also vectorised
  - see CHEP18 presentation: \#371
- Vectorization can be combined with multithreading parallelism for optimal speed-up
Fitting Performances

- Measure CPU performances in a typical HEP fitting
  - fit invariant mass spectrum to determine significance and location of the signal (e.g. $H \rightarrow gg$)
- Test using $\sim 1$ M data points in an unbinned fit
  - **ROOT only vs RooFit**

Fitting Performances: Desktop 8 cores

<table>
<thead>
<tr>
<th>Speed-up</th>
<th>ROOT</th>
<th>RooFit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>VECT</td>
<td>2.2</td>
<td>7.0</td>
</tr>
<tr>
<td>Multi-TH</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>SERIAL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Multi-PROC</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

for this fit serial ROOT is also $\sim 50\%$ faster

Fitting Performances: Server 28 cores

<table>
<thead>
<tr>
<th>Speed-up</th>
<th>ROOT</th>
<th>RooFit</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERIAL</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Multi-TH</td>
<td>30.0</td>
<td>88.0</td>
</tr>
<tr>
<td>VEC+MT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERIAL</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Multi-PROC</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

Intel Xeon CPU E5-2683 with 28 physical cores
Future Outlook

- Improve support for modelling more complex use cases
  - support in ROOT Fitter class constraint fits and simultaneous fits
    - e.g. fitting multiple histograms with common functions
- Provide interfaces for fitting new ROOT 7 histograms
- Investigate developing new back-ends for fitting
  - given a model definition (e.g. via a RooWorkspace, or the HistFactory)
    - use alternative implementation back-ends
      - e.g. pure ROOT or based on external packages (Tensorflow)
      - integrate with auto-differentiation for computing gradients
- Porting to GPU using CUDA
Conclusions

- Several improvements applied for defining model fitting functions in ROOT
  - easier to create functions with formula
  - support for convolutions and normalised sums
- Optimal performances in computing likelihood’s
  - using parallelisation and vectorisation (also who using TFormula)
- Advantages with respect to other packages, such as RooFit
  - capability of performing bin integrals fits is not available in RooFit
  - better performances and scalability to many cores
- Users feedback is very much welcomed!
Fitting Speedups

- Measure CPU performances in a typical HEP fitting
- Speedups by combining vectorisation and parallelisation

Vectorization Performance on AVX2

Intel Xeon CPU E5-2683 with 28 physical cores
Performance results evaluating a math expression using a free C++ function with TF1 and TF1 based on TFormula

Study the speed-up by using vectorisation on AVX

1. 2nd degree polynomial
2. exponential + gaussian