

Scaling studies for deep learning in LArTPC event classification

KOLAHAL BHATTACHARYA, ERIC CHURCH, MALACHI SCHRAM, JAN STRUBE, KEVIN WIERMAN, JEFF DAILY, CHARLES SIEGEL

Pacific Northwest National Laboratory

Introduction

- The MicroBooNE detector
 - 170 Tonne Liquid Argon Time Projection Chamber (LArTPC)
 - Readout:
 - 2 induction planes, 3256 wires
 - 1 collection plane, 3600 wires
- The data
 - One event image is ~150 MB
 - Orders of magnitude larger than images for standard problems
 - We use simulated events for single particle interactions
- Disclaimer: Use of data is blessed by MicroBooNE, but this presentation is **not** on behalf of the collaboration

Technology choices

- Large event images lead to small batch sizes
 - → Very slow gradient descent
- MaTEx (https://github.com/matex-org/matex) enables distributed training in TensorFlow / Keras with minimal code modfications
 - MPI for inter-node communication
- Distributed training allows to effectively scale the batch size with the number of nodes
 - More nodes → larger batch size → more efficient gradient descent (up to optimal value of batch size)
- Except for 3 lines of MaTEx setup, code is 100% valid Keras 2.0
- In-memory compression: http://blosc.org/
 - We are using the python implementation: pip install blosc
- Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs
- Dual NVIDIA P100 12GB PCI-e based GPUs

each node gets an N-th chunk of the data

Putting it all together

LArSoft

Data validation

Training

- Node 1
- Node 2
- Node N

KevLAr

In-memory Compression

Network and data

30k events for training 5k for validation

Aggregate weights

mu+-: 856.00

pi+-: 826.00	K+: 823.00	
Truth gamm	Pr diction a e+- mu+- pi+- K+	highest score was correct:
gamma 851.4	7 21.53 0.00 0.00 0.00	∂ 852
e+- 8.19	1611.79 0.00 0.01 2.00	0 1613
mu+- 0.00	0.00 853.93 0.00 2.07	7 854
pi+- 2.90	3.87 3.00 483.68 332.5	54 482
K+ 1.00	1.00 9.43 307.19 504.3	 37 508

Layer (type)	Output Shape	 Param #
block1_conv1 (Conv2D)	(None, 3600, 3600, 10)	======================================
elu_1 (ELU)	(None, 3600, 3600, 10)	0
block1_pool (MaxPooling2D)	(None, 720, 720, 10)	0
block2_conv1 (Conv2D)	(None, 720, 720, 64)	16064
elu_2 (ELU)	(None, 720, 720, 64)	0
block2_pool (MaxPooling2D)	(None, 144, 144, 64)	0
block3_conv1 (Conv2D)	(None, 144, 144, 128)	204928
elu_3 (ELU)	(None, 144, 144, 128)	0
block3_pool (MaxPooling2D)	(None, 28, 28, 128)	0
block4_conv1 (Conv2D)	(None, 28, 28, 256)	819456
elu_4 (ELU)	(None, 28, 28, 256)	0
block4_pool (MaxPooling2D)	(None, 5, 5, 256)	0
flatten (Flatten)	(None, 6400)	0
fc1 (Dense)	(None, 32)	204832
elu_5 (ELU)	(None, 32)	0
predictions (Dense)	(None, 5)	165
Total parame: 1 245 705		

Total params: 1,245,705

Training workflow

- Load the (modified) MaTEx dataset
 - Splits dataset into equal size chunks, one per MPI rank
- In each rank (node / GPU):
 - Load images into RAM
 - one at a time, compress, store in dictionary
- Load the Keras model, start training
- For each batch
 - Retrieve compressed images from datastore
 - Uncompress
 - move to GPU memory
 - learn
- Aggregate weights across nodes, average, update all nodes
- Rinse, repeat

Data throughput vs. number of nodes

Measurement of the data distribution:
Time to load all data
(30k events) into
memory
(2 GPUs share memory
on the same node)

→ More nodes == less work / node

Taking advantage of built-in multiprocessing capabilities.

Training speedup vs. number of CPUs

Relative speedup to train for 10(!) epochs

Jobs on 1 and 2 nodes did not complete in 4 days, hence omitted.

Jobs submitted to separate nodes (16-core).

Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs 64 GB 2133Mhz DDR4 memory per node

No work done to improve multicore utilization over vanilla python / keras / tensorflow

Training speedup vs. number of GPUs

Time to train for 50 epochs

Time includes decompression of images and movement to the GPU

Relative speedup over CPU ~35

→ I/O dominated

Loss performance for multiple nodes

Loss = categorical cross-entropy

More nodes

- → larger batch size
- → more efficient gradient updates.

In addition to training speedup, large difference in training performance with larger batch sizes

Conclusions

- Multi-node setup enables training on full-fidelity MicroBooNE event images.
 - This allows comparisons with the reduced images to evaluate the information loss in the size reduction.
 - linear scaling with the number of CPUs
 - (slightly better than) linear scaling on GPUs (up to the maximal number of 14 in our tests).
 - Detailed understanding of deviation from linear scaling would need further studies
 - Data loading mechanism and MPI behavior as bottlenecks on single node are possible sources.
- Multi-node training allows to effectively increase the batch size for convolutional networks of large event images.
 - demonstrated using MaTEx.
 - More efficient gradient updates require fewer epochs to arrive at the same loss (or lead to better loss after the same number of epochs)
 - LarTPC experiments clearly benefit from an HPC workflow.
- The project cycle is now completed.
 - Additional studies on OLCF's Summit (allocation available) pending HEP-ASCR funding.