Scaling studies for deep learning in LArTPC event classification

KOLAHAL BHATTACHARYA, ERIC CHURCH, MALACHI SCHRAM, JAN STRUBE, KEVIN WIERMAN, JEFF DAILY, CHARLES SIEGEL
Pacific Northwest National Laboratory
Introduction

► The MicroBooNE detector
 ■ 170 Tonne Liquid Argon Time Projection Chamber (LArTPC)
 ■ Readout:
 ◦ 2 induction planes, 3256 wires
 ◦ 1 collection plane, 3600 wires
 ◦ 9600 digitizations \(\cong 4.8 \) ms (\(\sim 3x \) TPC drift length)

► The data
 ■ One event image is \(\sim 150 \) MB
 ◦ Orders of magnitude larger than images for standard problems
 ■ We use simulated events for single particle interactions

► Disclaimer: Use of data is blessed by MicroBooNE, but this presentation is not on behalf of the collaboration
Technology choices

- Large event images lead to small batch sizes
 → Very slow gradient descent

- **MaTEx** (https://github.com/matex-org/matex) enables distributed training in TensorFlow / Keras with minimal code modifications
 - MPI for inter-node communication
- Distributed training allows to effectively scale the batch size with the number of nodes
 - More nodes → larger batch size → more efficient gradient descent (up to optimal value of batch size)
- Except for 3 lines of MaTEx setup, code is 100% valid Keras 2.0

- In-memory compression: http://blosc.org/
 - We are using the python implementation: `pip install blosc`

- Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs
- Dual NVIDIA P100 12GB PCI-e based GPUs
Putting it all together

- **LArSoft**
- **Data validation**
- **KevLAr**
- **In-memory Compression**

Training
- Node 1
- Node 2
- Node N

July 11, 2018
Network and data

30k events for training
5k for validation

<table>
<thead>
<tr>
<th>Truth</th>
<th>Prediction</th>
<th>highest score was correct:</th>
</tr>
</thead>
<tbody>
<tr>
<td>gamma</td>
<td>851.47</td>
<td>21.53</td>
</tr>
<tr>
<td>e+</td>
<td>8.19</td>
<td>1611.79</td>
</tr>
<tr>
<td>mu+</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>pi+</td>
<td>2.90</td>
<td>3.87</td>
</tr>
<tr>
<td>K+</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Aggregate weights

Layer (type) Output Shape Param #
block1_conv1 (Conv2D) (None, 3600, 3600, 10) 260
elu_1 (ELU) (None, 3600, 3600, 10) 0
block1_pool (MaxPooling2D) (None, 720, 720, 10) 0
block2_conv1 (Conv2D) (None, 720, 720, 64) 16064
elu_2 (ELU) (None, 720, 720, 64) 0
block2_pool (MaxPooling2D) (None, 144, 144, 64) 0
block3_conv1 (Conv2D) (None, 144, 144, 128) 204928
elu_3 (ELU) (None, 144, 144, 128) 0
block3_pool (MaxPooling2D) (None, 28, 28, 128) 0
block4_conv1 (Conv2D) (None, 28, 28, 256) 819456
elu_4 (ELU) (None, 28, 28, 256) 0
block4_pool (MaxPooling2D) (None, 5, 5, 256) 0
flatten (Flatten) (None, 6400) 0
fc1 (Dense) (None, 32) 204832
elu_5 (ELU) (None, 32) 0
predictions (Dense) (None, 5) 165

Total params: 1,245,705
Training workflow

- Load the (modified) MaTEx dataset
 - Splits dataset into equal size chunks, one per MPI rank
- In each rank (node / GPU):
 - Load images into RAM
 - one at a time, compress, store in dictionary
- Load the Keras model, start training
- For each batch
 - Retrieve compressed images from datastore
 - Uncompress
 - move to GPU memory
 - learn
- Aggregate weights across nodes, average, update all nodes
- Rinse, repeat
Data throughput vs. number of nodes

Measurement of the data distribution:
Time to load all data (30k events) into memory (2 GPUs share memory on the same node)

More nodes == less work / node

Taking advantage of built-in multiprocessing capabilities.

Detailed understanding of scaling behavior requires additional studies.
Training speedup vs. number of CPUs

Relative speedup to train for 10(!) epochs

Jobs on 1 and 2 nodes did not complete in 4 days, hence omitted.

Jobs submitted to separate nodes (16-core).

Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs

64 GB 2133Mhz DDR4 memory per node

No work done to improve multi-core utilization over vanilla python / keras / tensorflow

$y = 0.25x + 0.00$

Scaled to 4-CPU performance
Training speedup vs. number of GPUs

Time to train for 50 epochs

Time includes decompression of images and movement to the GPU

Relative speedup over CPU ~35
→ I/O dominated

$\chi^2 / \text{ndf} = 0.2314 / 6$

$p_0 = -0.2079 \pm 0.1321$

$p_1 = 1.15 \pm 0.01578$

Detailed understanding of scaling behavior requires additional studies
Loss = categorical cross-entropy

More nodes
➞ larger batch size
➞ more efficient gradient updates.

In addition to training speedup, large difference in training performance with larger batch sizes
Conclusions

- Multi-node setup enables training on full-fidelity MicroBooNE event images.
 - This allows comparisons with the reduced images to evaluate the information loss in the size reduction.
 - Linear scaling with the number of CPUs
 - (slightly better than) linear scaling on GPUs (up to the maximal number of 14 in our tests).
 - Detailed understanding of deviation from linear scaling would need further studies
 - Data loading mechanism and MPI behavior as bottlenecks on single node are possible sources.

- Multi-node training allows to effectively increase the batch size for convolutional networks of large event images.
 - Demonstrated using MaTEx.
 - More efficient gradient updates require fewer epochs to arrive at the same loss (or lead to better loss after the same number of epochs)
 - LarTPC experiments clearly benefit from an HPC workflow.

- The project cycle is now completed.
 - Additional studies on OLCF’s Summit (allocation available) pending HEP-ASCR funding.