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MicroBooNE

August 24, 2017 5

170 Tonne LArTPC
Current generation scale TPC

Part of short baseline program

3 planes
2 Induction planes @ 3256 wires

1 Collection Plane @ 3600 wires

Readout window
9600 digitizations (or time ticks) total

4.8 ms (~3x drift length of TPC)

Additionally records optical data via PMTs for T0

Image courtesy of: https://www-
microboone.fnal.gov/public/aboutdetector.html

Introduction

The MicroBooNE detector
170 Tonne
Liquid Argon Time Projection Chamber (LArTPC)
Readout:

2 induction planes, 3256 wires
1 collection plane, 3600 wires
9600 digitizations ≘ 4.8 ms (~3x TPC drift length)

The data
One event image is ~150 MB

Orders of magnitude larger than
images for standard problems

We use simulated events for 
single particle interactions

Disclaimer: Use of data is blessed by MicroBooNE, but 
this presentation is not on behalf of the collaboration
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Technology choices

Large event images lead to small batch sizes
➞ Very slow gradient descent

MaTEx (https://github.com/matex-org/matex) enables distributed 
training in TensorFlow / Keras with minimal code modfications

MPI for inter-node communication
Distributed training allows to effectively scale the batch size with the 
number of nodes

More nodes → larger batch size → more efficient gradient descent (up to 
optimal value of batch size)

Except for 3 lines of MaTEx setup, code is 100% valid Keras 2.0

In-memory compression: http://blosc.org/
We are using the python implementation: pip install blosc

Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs
Dual NVIDIA P100 12GB PCI-e based GPUs
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Node 1
Node 2

…
Node N

each node gets an 
N-th chunk of the 
data 

https://github.com/matex-org/matex
http://blosc.org/


Putting it all together

LArSoft

ROOT

KevLAr

HDF5

Data 
validation

HDF5
In-memory 

Compression

MaTEx

Training
• Node 1
• Node 2
• ---
• Node N
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_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
block1_conv1 (Conv2D)        (None, 3600, 3600, 10)    260
_________________________________________________________________
elu_1 (ELU)                  (None, 3600, 3600, 10)    0
_________________________________________________________________
block1_pool (MaxPooling2D)   (None, 720, 720, 10)      0
_________________________________________________________________
block2_conv1 (Conv2D)        (None, 720, 720, 64)      16064
_________________________________________________________________
elu_2 (ELU)                  (None, 720, 720, 64)      0
_________________________________________________________________
block2_pool (MaxPooling2D)   (None, 144, 144, 64)      0
_________________________________________________________________
block3_conv1 (Conv2D)        (None, 144, 144, 128)     204928
_________________________________________________________________
elu_3 (ELU)                  (None, 144, 144, 128)     0
_________________________________________________________________
block3_pool (MaxPooling2D)   (None, 28, 28, 128)       0
_________________________________________________________________
block4_conv1 (Conv2D)        (None, 28, 28, 256)       819456
_________________________________________________________________
elu_4 (ELU)                  (None, 28, 28, 256)       0
_________________________________________________________________
block4_pool (MaxPooling2D)   (None, 5, 5, 256)         0
_________________________________________________________________
flatten (Flatten)            (None, 6400)              0
_________________________________________________________________
fc1 (Dense)                  (None, 32)                204832
_________________________________________________________________
elu_5 (ELU)                  (None, 32)                0
_________________________________________________________________
predictions (Dense)          (None, 5)                 165
=================================================================
Total params: 1,245,705

Network and data
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30k events for training
5k for validation

gamma: 873.00   e+-: 1622.00    mu+-: 856.00    
pi+-: 826.00    K+: 823.00
-------------------------------------------------
| Truth |              Prediction               | highest score
|       | gamma |  e+- | mu+- | pi+- |  K+   | was correct:
-------------------------------------------------
| gamma |851.47 | 21.53 | 0.00  | 0.00  | 0.00  | 852
-------------------------------------------------
|  e+- | 8.19  |1611.79| 0.00  | 0.01  | 2.00  | 1613
-------------------------------------------------
| mu+- | 0.00  | 0.00  |853.93 | 0.00  | 2.07  | 854
-------------------------------------------------
| pi+- | 2.90  | 3.87  | 3.00  |483.68 |332.54 | 482
-------------------------------------------------
|  K+   | 1.00  | 1.00  | 9.43  |307.19 |504.37 | 508
-------------------------------------------------

Aggregate weights



Training workflow

Load the (modified) MaTEx dataset
Splits dataset into equal size chunks, one per MPI rank

In each rank (node / GPU):
Load images into RAM
one at a time, compress, store in dictionary

Load the Keras model, start training
For each batch

Retrieve compressed images from datastore
Uncompress
move to GPU memory
learn

Aggregate weights across nodes, average, update all nodes
Rinse, repeat
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Measurement of the 
data distribution:
Time to load all data 
(30k events) into 
memory
(2 GPUs share memory 
on the same node)

➞More nodes == less 
work / node

Taking advantage of 
built-in multiprocessing 
capabilities.

Detailed understanding of scaling behavior requires 
additional studies

Data throughput vs. number of nodes



Training speedup vs. number of CPUs
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Jobs on 1 and 2 nodes did 
not complete in 4 days, 
hence omitted.

Relative speedup to train for 
10(!) epochs

Jobs submitted to separate 
nodes (16-core). 
Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs 
64 GB 2133Mhz DDR4 memory per node

No work done to improve multi-
core utilization over vanilla 
python / keras / tensorflow

Scaled to  4-CPU performance
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Time to train for 50 
epochs

Time includes 
decompression of 
images and 
movement to the GPU

Detailed understanding of scaling behavior requires 
additional studies

Relative speedup over 
CPU ~35
➞ I/O dominated
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Loss performance for multiple nodes
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More nodes 
➞ larger batch size
➞more efficient 
gradient updates.

Loss = categorical 
cross-entropy

In addition to training 
speedup, large 
difference in training 
performance with 
larger batch sizes



Conclusions

Multi-node setup enables training on full-fidelity MicroBooNE event images.
This allows comparisons with the reduced images to evaluate the information loss in the size reduction.
linear scaling with the number of CPUs
(slightly better than) linear scaling on GPUs (up to the maximal number of 14 in our tests).

Detailed understanding of deviation from linear scaling would need further studies
Data loading mechanism and MPI behavior as bottlenecks on single node are possible sources.

Multi-node training allows to effectively increase the batch size for convolutional networks of large 
event images.

demonstrated using MaTEx.
More efficient gradient updates require fewer epochs to arrive at the same loss (or lead to better loss after 
the same number of epochs)
LarTPC experiments clearly benefit from an HPC workflow.

The project cycle is now completed.
Additional studies on OLCF’s Summit (allocation available) pending HEP-ASCR funding.

July 11, 2018 11


