
July 11, 2018 1

Scaling studies for deep learning in
LArTPC event classification

KOLAHAL BHATTACHARYA, ERIC CHURCH, MALACHI SCHRAM, JAN STRUBE, KEVIN WIERMAN, JEFF DAILY,
CHARLES SIEGEL
Pacific Northwest National Laboratory

K. Wierman, ACAT 2017

MicroBooNE

August 24, 2017 5

170 Tonne LArTPC
Current generation scale TPC

Part of short baseline program

3 planes
2 Induction planes @ 3256 wires

1 Collection Plane @ 3600 wires

Readout window
9600 digitizations (or time ticks) total

4.8 ms (~3x drift length of TPC)

Additionally records optical data via PMTs for T0

Image courtesy of: https://www-
microboone.fnal.gov/public/aboutdetector.html

Introduction

The MicroBooNE detector
170 Tonne
Liquid Argon Time Projection Chamber (LArTPC)
Readout:

2 induction planes, 3256 wires
1 collection plane, 3600 wires
9600 digitizations ≘ 4.8 ms (~3x TPC drift length)

The data
One event image is ~150 MB

Orders of magnitude larger than
images for standard problems

We use simulated events for
single particle interactions

Disclaimer: Use of data is blessed by MicroBooNE, but
this presentation is not on behalf of the collaboration

July 11, 2018 2

Technology choices

Large event images lead to small batch sizes
➞ Very slow gradient descent

MaTEx (https://github.com/matex-org/matex) enables distributed
training in TensorFlow / Keras with minimal code modfications

MPI for inter-node communication
Distributed training allows to effectively scale the batch size with the
number of nodes

More nodes → larger batch size → more efficient gradient descent (up to
optimal value of batch size)

Except for 3 lines of MaTEx setup, code is 100% valid Keras 2.0

In-memory compression: http://blosc.org/
We are using the python implementation: pip install blosc

Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs
Dual NVIDIA P100 12GB PCI-e based GPUs

July 11, 2018 3

Da
ta

se
t

Node 1
Node 2

…
Node N

each node gets an
N-th chunk of the
data

https://github.com/matex-org/matex
http://blosc.org/

Putting it all together

LArSoft

ROOT

KevLAr

HDF5

Data
validation

HDF5
In-memory

Compression

MaTEx

Training
• Node 1
• Node 2
• ---
• Node N

July 11, 2018 4

Layer (type) Output Shape Param #
===
block1_conv1 (Conv2D) (None, 3600, 3600, 10) 260

elu_1 (ELU) (None, 3600, 3600, 10) 0

block1_pool (MaxPooling2D) (None, 720, 720, 10) 0

block2_conv1 (Conv2D) (None, 720, 720, 64) 16064

elu_2 (ELU) (None, 720, 720, 64) 0

block2_pool (MaxPooling2D) (None, 144, 144, 64) 0

block3_conv1 (Conv2D) (None, 144, 144, 128) 204928

elu_3 (ELU) (None, 144, 144, 128) 0

block3_pool (MaxPooling2D) (None, 28, 28, 128) 0

block4_conv1 (Conv2D) (None, 28, 28, 256) 819456

elu_4 (ELU) (None, 28, 28, 256) 0

block4_pool (MaxPooling2D) (None, 5, 5, 256) 0

flatten (Flatten) (None, 6400) 0

fc1 (Dense) (None, 32) 204832

elu_5 (ELU) (None, 32) 0

predictions (Dense) (None, 5) 165
===
Total params: 1,245,705

Network and data

July 11, 2018 5

30k events for training
5k for validation

gamma: 873.00 e+-: 1622.00 mu+-: 856.00
pi+-: 826.00 K+: 823.00

| Truth | Prediction | highest score
| | gamma | e+- | mu+- | pi+- | K+ | was correct:

| gamma |851.47 | 21.53 | 0.00 | 0.00 | 0.00 | 852

| e+- | 8.19 |1611.79| 0.00 | 0.01 | 2.00 | 1613

| mu+- | 0.00 | 0.00 |853.93 | 0.00 | 2.07 | 854

| pi+- | 2.90 | 3.87 | 3.00 |483.68 |332.54 | 482

| K+ | 1.00 | 1.00 | 9.43 |307.19 |504.37 | 508

Aggregate weights

Training workflow

Load the (modified) MaTEx dataset
Splits dataset into equal size chunks, one per MPI rank

In each rank (node / GPU):
Load images into RAM
one at a time, compress, store in dictionary

Load the Keras model, start training
For each batch

Retrieve compressed images from datastore
Uncompress
move to GPU memory
learn

Aggregate weights across nodes, average, update all nodes
Rinse, repeat

July 11, 2018 6

of GPUs
0 2 4 6 8 10 12 14

Lo
ad

in
g

Sp
ee

d
up

0

2

4

6

8

10

12

14

16

18

20 / ndf 2c 0.4623 / 6
p0 0.1868±0.4912 -
p1 0.02231± 1.422

 / ndf 2c 0.4623 / 6
p0 0.1868±0.4912 -
p1 0.02231± 1.422

Graph

July 11, 2018 7

Measurement of the
data distribution:
Time to load all data
(30k events) into
memory
(2 GPUs share memory
on the same node)

➞More nodes == less
work / node

Taking advantage of
built-in multiprocessing
capabilities.

Detailed understanding of scaling behavior requires
additional studies

Data throughput vs. number of nodes

Training speedup vs. number of CPUs

July 11, 2018 8

Jobs on 1 and 2 nodes did
not complete in 4 days,
hence omitted.

Relative speedup to train for
10(!) epochs

Jobs submitted to separate
nodes (16-core).
Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs
64 GB 2133Mhz DDR4 memory per node

No work done to improve multi-
core utilization over vanilla
python / keras / tensorflow

Scaled to 4-CPU performance

of GPUs
0 2 4 6 8 10 12 14

Tr
ai

ni
ng

 s
pe

ed
 u

p

0

2

4

6

8

10

12

14

16
 / ndf 2c 0.2314 / 6

p0 0.1321±0.2079 -
p1 0.01578± 1.15

 / ndf 2c 0.2314 / 6
p0 0.1321±0.2079 -
p1 0.01578± 1.15

GraphTraining speedup vs. number of GPUs

July 11, 2018 9

Time to train for 50
epochs

Time includes
decompression of
images and
movement to the GPU

Detailed understanding of scaling behavior requires
additional studies

Relative speedup over
CPU ~35
➞ I/O dominated

of epochs
0 10 20 30 40 50

Lo
ss

0

0.1

0.2

0.3

0.4

0.5

Without Validation
1 node, 1 GPU
1 node, 2 GPU
2 nodes, 4 GPUs
3 nodes, 6 GPUs
4 nodes, 8 GPUs
5 nodes, 10 GPUs
6 nodes, 12 GPUs
7 nodes, 14 GPUs

Loss performance for multiple nodes

July 11, 2018 10

More nodes
➞ larger batch size
➞more efficient
gradient updates.

Loss = categorical
cross-entropy

In addition to training
speedup, large
difference in training
performance with
larger batch sizes

Conclusions

Multi-node setup enables training on full-fidelity MicroBooNE event images.
This allows comparisons with the reduced images to evaluate the information loss in the size reduction.
linear scaling with the number of CPUs
(slightly better than) linear scaling on GPUs (up to the maximal number of 14 in our tests).

Detailed understanding of deviation from linear scaling would need further studies
Data loading mechanism and MPI behavior as bottlenecks on single node are possible sources.

Multi-node training allows to effectively increase the batch size for convolutional networks of large
event images.

demonstrated using MaTEx.
More efficient gradient updates require fewer epochs to arrive at the same loss (or lead to better loss after
the same number of epochs)
LarTPC experiments clearly benefit from an HPC workflow.

The project cycle is now completed.
Additional studies on OLCF’s Summit (allocation available) pending HEP-ASCR funding.

July 11, 2018 11

