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Introduction ’ Pacific

Northwest

» The MicroBooNE detector

M 170 Tonne
Liquid Argon Time Projection Chamber (LArTPC)

B Readout:
® 2 induction planes, 3256 wires
@ 1 collection plane, 3600 wires
@ 9600 digitizations = 4.8 ms (~3x TPC drift length)
» The data

B One eventimage is ~150 MB

@ Orders of magnitude larger than
images for standard problems

B We use simulated events for
single particle interactions
» Disclaimer: Use of data is blessed by MicroBooNE, but
this presentation is not on behalf of the collaboration

pBooNE

Run 1153 Event 40, August &' 2015 21107
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Technology choices :f:

Northwest

» Large event images lead to small batch sizes N Od e 1

— Very slow gradient descent

» MaTEx (hitps:/aithub.conm/matex-org/matex) enables distributed N Od e 2
training in TensorFlow / Keras with minimal code modfications
B MPI for inter-node communication
» Distributed training allows to effectively scale the batch size with the
number of nodes _

B More nodes — larger batch size — more efficient gradient descent (up to
optimal value of batch size)
> Except for 3 lines of MaTEX setup, code is 100% valid Keras 2.0 Node N

» In-memory compression: hitp://blosc.org/

B We are using the python implementation: pip install blosc

each node gets an
N-th chunk of the
data

Dual Intel Broadwell E5-2620 v4 @ 2.10GHz CPUs
Dual NVIDIA P100 12GB PCl-e based GPUs

vy
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https://github.com/matex-org/matex
http://blosc.org/

Putting it all together ——
N

Data
validation
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Training

e Node 1
e Node 2

LArSoft
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Network and data

30k events for training
5k for validation

Aggregate weights

gamma: 873.00 e+-: 1622.00 mu+-: 856.00

pi+-: 826.00 K+: 823.00

| truth | peffiction | highest score
| | gamma | e+- mu+- | pi+- | K+ | was correct:
| gamma 1851.47 | 21.53 | 0.0 | 0.00 | 0.00 | 852

| es— | 8.49 [1611.79] 0.00 | 0.01 | 2.00 | 1613

| mus— | 0.00 | 0.00 1853.93 | 0.00 | 2.07 | 854

| pie- | 2.9 | 3.87 | 3.00 [483.68 |332.54 | 482

| K+ 11.00 | 1.00 | 9.43 1307.19 |504.37 | 508

Layer (type) Output Shape Param #
block1_convi (Conv2D) (None, 3600, 3600, 10) 260
elu_1 (ELU) (None, 3600, 3600, 10) O
block1_pool (MaxPooling2D)  (None, 720, 720, 10) 7
block2_convl (Conv2D) (None, 720, 720, 64) 16064
elu_2 (ELU) (None, 720, 720, 64) 0
block2_pool (MaxPooling2D)  (None, 144, 144, 64) 0
block3_convl (Conv2D) (None, 144, 144, 128) 204928
elu_3 (ELU) (None, 144, 144, 128) 0
block3_pool (MaxPooling2D) (None, 28, 28, 128) Q
block4_convl (Conv2D) (None, 28, 28, 256) 819456
elu_4 (ELU) (None, 28, 28, 256) 0
block4_pool (MaxPooling2D) (None, 5, 5, 256) 0
flatten (Flatten) (None, 6400) 0

fc1 (Dense) (None, 32) 204832
elu_5 (ELU) (None, 32) 0
predictions (Dense) (None, 5) 165

Total params: 1,245,705
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. >
Training workflow Pacific

_No_r‘thvwves_t

» Load the (modified) MaTEx dataset

B Splits dataset into equal size chunks, one per MPI rank

» In each rank (node / GPU):
M Load images into RAM
M one at a time, compress, store in dictionary

» Load the Keras model, start training
» For each batch

B Retrieve compressed images from datastore
B Uncompress

B move to GPU memory

M learn

» Aggregate weights across nodes, average, update all nodes
» Rinse, repeat
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Data throughput vs. number of nodes

Loading Speed up

N
o

—_
(00)

16

14

12

10

2/ ndf 0.4623 /6
p0 ~0.4912 + 0.1868
pi 1.422 + 0.02231

Detailed understanding of scaling behavior requires
additional studies

o
o

2 4 6 8 10 12 14
# of GPUs

\;7/ -
Pacific
Northwest

Measurement of the
data distribution:
Time to load all data
(30k events) into

memory
(2 GPUs share memory

on the same node)

— More nodes == less
work / node

Taking advantage of
built-in multiprocessing
capabilities.
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Training speedup vs. number of CPUs

2.4 -

speedup rel. to four nodes
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y=0.25*x + 0.00

Scaled to 4-CPU performance

\;7/ -
Pacific
Northwest

Relative speedup to train for
10(!) epochs

Jobs on 1 and 2 nodes did
not complete in 4 days,
hence omitted.

Jobs submitted to separate
nodes (16-core).

Dual Intel Broadwell E5-2620v4 @ 2.10GHz CPUs
64 GB 2133Mhz DDR4 memory per node

No work done to improve multi-
core utilization over vanilla

python / keras / tensorflow
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Training speedup vs. number of GPUs

Training speed up

=7

Pacific
No_rthw_est
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v2 / ndf
p0
p1

0.2314/6
—-0.2079 + 0.1321
1.15+ 0.01578
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Detailed understanding of scaling behavior requires

additional studies

Time to train for 50
epochs

Time includes

decompression of
images and

movement to the GPU

Relative speedup over
CPU ~35
— |/O dominated
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Loss performance for multiple nodes

Loss
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Pacific

peorest
Loss = categorical
cross-entropy

More nodes

— |arger batch size
— more efficient
gradient updates.

In addition to training
speedup, large
difference in training
performance with
larger batch sizes
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Conclusions p/f

No_rthwes_t

» Multi-node setup enables training on full-fidelity MicroBooNE event images.
B This allows comparisons with the reduced images to evaluate the information loss in the size reduction.
M linear scaling with the number of CPUs
M (slightly better than) linear scaling on GPUs (up to the maximal number of 14 in our tests).
@ Detailed understanding of deviation from linear scaling would need further studies
@ Data loading mechanism and MPI behavior as bottlenecks on single node are possible sources.

» Multi-node training allows to effectively increase the batch size for convolutional networks of large
event images.
B demonstrated using MaTEXx.

B More efficient gradient updates require fewer epochs to arrive at the same loss (or lead to better loss after
the same number of epochs)

B LarTPC experiments clearly benefit from an HPC workflow.

» The project cycle is now completed.
B Additional studies on OLCF’s Summit (allocation available) pending HEP-ASCR funding.
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