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A common scenario in experimental science

∙ Simulations are needed to understand data
∙ Machine learning is central in the pipeline
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Error sources

measure = value± σstat ± σsyst

Statistical error

∙ Empirical ̸= asymptotic (Lack of data)
∙ Noise

Systematic error

”known unknowns”

∙ Apparatus imperfection
∙ Simulation imperfection
∙ Lack of theoretical knowledge
∙ Bugs

Model selection

∙ Limited model capacity
∙ Biased model choice
∙ Limited computation resources
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Example of systematic effect : camera rotation

Original digits

Apparatus imperfection slightly rotates the image
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Example of systematic effect : Scale problem

The scaling issue : true value = (1+ z)×measured value
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Caracterize systematics

Skewing function : d(x, z)

∙ Rotation of image input
∙ Rescaling

Nuisance parameter : z

∙ Angle of the rotation
∙ Scale factor

In real life there is several nuisance parameters with different
impact on the data

Baby steps here : let’s start with just one
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Domain Adaptation (transfer learning)

Domain adaptation helps machine learning to be accurate on similar
data
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Deep learning architectures (a few samples)

Tangent Propagation (TP)

[Simard et al., 1991]
[Rifai et al., 2011]

Pivot Adversarial Network (PAN)

[Louppe et al., 2016]

Domain Adversarial Network (DAN)

[Ganin et al., 2015]

Generative Adversarial Network
(GAN)

[Goodfellow et al., 2014] 10



Tangent Propagation in a nutshell

d( , z) =

∙ Regularize the derivative of the model according to the
transformation.

loss = Estandard + λ
∑

x∈Data

∣∣∣∣∂f(d(x, z); θ)∂z

∣∣∣∣2
z=0

∙ Less data intensive than data augmentation
∙ Jacobian vector product trick : compute this derivative with a
forward propagation through a ”linearised” network.

∂f(d(x, z); θ)
∂z

∣∣∣∣
z=0

= ∇xf(x; θ).
∂d(x, z)

∂z

∣∣∣∣
z=0

[Simard et al., 1991] [Rifai et al., 2011]
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Pivot Adversarial Neural Network

[Louppe et al., 2016]

Classifier f

X

θf

f(X; θf)

pθf (Y|X)

Lf(θf)

...

Adversary r

γ1(f(X; θf); θr)

γ2(f(X; θf); θr)

. . .

θr

...

Z

pθr (Z|f(X; θf))

P(γ1, γ2, . . . )

Lr(θf, θr)

∙ Learn the loss
∙ Makes it impossible to reconstruct Z from the output of the model
∙ Can include knowledge about nuisance parameter distribution
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HEP benchmark : Simulation data

∙ Simulation of the H → ττ decay
∙ Nuisance parameter : τ energy scale (±[1%, 10%])
∙ Data from HiggsML challenge [Adam-Bourdarios et al., 2014]1

∙ Data from [Baldi et al., 2014]2

1Available http://opendata.cern.ch/record/328
2Available https://archive.ics.uci.edu/ml/datasets/HIGGSs
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Estimate statistic and systematic error

Final objective : measuring a cross section

Number of events Nz follow a Poisson distribution

The nuisance parameter induce a multiplicative error

After addition of the logarithmic derivatives we get :

σµ

µ
=

√(√
s0 + b0
s0

)2

+

(
(sz − s0) + (bz − b0)

s0

)2

∙ s =
∑

S,scorei>t wi, selected signals (True positives)
∙ b =

∑
B,scorei>t wi, selected backgrounds (False positives)

∙ ∗0, on the nominal data
∙ ∗z, on the skewed data

Learning objective is to minimize the relative error σµ

µ
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Experimental settings

∙ Hyper parameters selected with grid search
∙ Models are compared with same structures (#neurons,
non-linearities)

∙ Data augmentation and Pivot are fed with z drawn from a Gaussian
distribution

∙ The others are trained with nominal data only
∙ Report estimated error along classification threshold
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Results of the contest

∙ Nothing beats the baseline (neural net)
∙ Tangent propagation is the worse. 18



Mixture failure

∙ Data augmentation & Pivot imitate a basic Neural Net
∙ Nothing to learn from the new skewed data instances ? 19



Tangent Propagation : Loosing on stat only

√
s0+b0
s0

(sz−s0)+(bz−b0)
s0

Performance loss mainly from statistical error
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Decision shift vs score (+3%)

∙ Tangent Propagation is reducing decision shift
∙ Mixture models are not imitating neural net
∙ Why σµ

µ is not showing this behaviour ? 21
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Conclusions and Perspectives

Rank vs Score

∙ We’ve been tackling the problem in the wrong way.
∙ We don’t need robustness along the classification score.
∙ We need the rank to be constant.

Perspective

∙ New toy dataset with controled properties
∙ Explore domain adaptation giving robust ranking
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Thank you for your attention

Questions ?
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Tangent vector

∂d( , z)
∂z

∣∣∣∣∣∣∣
z=0

=

-

2z =
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Jacobian vector product trick
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Pivot Adversarial Neural Network

Generative process p(X, Y, Z)

Train a neural net f(X; θf) to estimate the probability density p(Y|X) (Z
is marginalized)

We want to have the pivotal condition :

∀(z, z′),p(f(X; θf) = score|z) = p(f(X; θf) = score|z′)

We want f(X; θf) and Z to be independent random variables

So we train an adversarial network to estimate p(Z|f(X; θf))

[Louppe et al., 2016]
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HEP benchmark : Tau energy scale

1. Scaling; 2. recompute derivate features; 3. cut data

28



HEP benchmark : Measuring a cross section

∙ Cross section = counting positive class
∙ Nz = sz + bz selected event (Positives)
∙ sz =

∑
S,scorei>t wi, selected signals (True positives)

∙ bz =
∑

B,scorei>t wi, selected backgrounds (False positives)
∙ ŝz = Nz − b0

∙ Normalized cross section µz =
ŝz
s0 = sz+bz−b0

s0
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Systematics dominate

√
s0+b0
s0

(sz−s0)+(bz−b0)
s0

∙ The systematics dominates the measurement error

∙ But the statistical error cannot be ignored near minimum
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Threshold optimization

∙ Taking systematic effect into account drastically changes nb of
event kept 31



Gradient Boosting : details

∙ sklearn 0.18
∙ 1000 trees
∙ maximum depth is 3 (i.e. 6 nodes maximum)
∙ Train only on nominal data (z = 0)

32



Gradient Boosting : using skewed features ?

Skewed features are used
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Gradient Boosting : small decision variation

Score variation are small and goes both way
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Gradient Boosting : few trees are affected

Only a few trees among the 1000 are changing
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Gradient Boosting : tree disagreement
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Gradient Boosting : conclusion

∙ Based on small trees : decision function is constant almost
everywhere

∙ Many trees disagree among themselves
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HIGGS : separability issue

∙ low H-divergence [Ben-David et al., 2010]
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Tangent Propagation : Details

∙ 3 hidden layers
∙ 120 neurons each
∙ Adam optimizer
∙ Train on nominal data + tangent vectors
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Tangent Propagation : Loosing for every λ
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Symmetry ? (1%)
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Symmetry ? (5%)
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Symmetry ? (8%)
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Symmetry ? (10%)
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Gradient Boosting : disagreement symmetry
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Gradient Boosting : strong disagreement symmetry
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Discussion

invariant vs profiling.

Being invariant is too hard. In the end the nuisance params take
only one value.

Ask David : ”In practice, a NP is η and pT dependent and affect each
events differently” So in the end the tau energy scale may differ a
little bit event wise ? Answer : No, the NP is the same for all the
events but its impact on each event depend on other variables

The DER features may contribute to the robustness of GB ?
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