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Today’s menu



CTA introduction

• Future ground-based telescope for gamma-ray astronomy 

(Imaging Atmospheric Cherenkov Telescope)

• Study the Very High Energy universe: cosmic ray origins, 

astrophysical phenomena, fundamental physics and 

cosmology

• > 1400 scientists and engineers in 31 countries

• Currently in pre-construction phase. 

3https://www.cta-observatory.org/
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CTA sensitivity

LST MST SST

Different telescopes sizes
observe at different 

energies

Increase of sensitivity

by factors 5 to 10

w.r.t existing facilities 7

Mirror ⌀ ~23m ~11.5m ~4m

FoV ~4.3deg ~7.5deg ~9deg



Data management



Data management



• Machine learning (ML) is already being used in current 

Cherenkov telescope facilities

– Energy reconstruction

– Particle discrimination (classification)

– E.g. random forests on pre-calculated features 

• Deep learning (DL) aims at replacing the “pre-calculation” 

phase

– Starting from raw images

Deep learning
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• DL  requires training data

– CTA data reconstruction is based on large simulations (= labelled 

data)

Offline processing

• DL approach is expected to improve the reconstruction, 

starting from raw information, without bias or modification

• DL could replace (and overcome) complex reconstruction 

algorithms

A good choice for CTA data?
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Online processing

• Training can be done offline and predict quickly online

– Event selection online for volume reduction before data transfer ?

– 1 photon event (signal) for ~ 1000 hadronic events (background)

A good choice for CTA data?
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GammaLearn - a collaborative 

project

Particle Physics Lab

Data processing lab

Deep Learning
Company
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GammaLearn - objectives

• Reconstruct events physical parameters from raw images

– Energy

– Incoming direction

– Particle type

• Improve particle discrimination

– To improve CTA sensitivity

– To reduce data volumes on-site before transfer
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CTA specificities

CTA specificities to apply deep learning

• Non-standard images 

• Stereoscopy
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CTA specificities – images

• Non-standard images shapes
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• How to deal with images 
borders?



CTA specificities – images

• Non-standard images shape and hexagonal lattices

17



CTA specificities – images

• Non-standard images shape and hexagonal lattices
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• How to deal with pixels 
neighbours ?

• Convolution
• Pooling



Dealing with non standard images
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• Oversampling ?

– Standard way to deal with this kind of problem

– BUT it introduces:

• CPU computation in production

• Biases in already low-resolution images



Dealing with non standard images
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• Oversampling ?

– Standard way to deal with this kind of problem

– BUT it introduces:

• Some (heavy?) CPU computation in production

• Biases in already low-resolution images

• ⇨ Re-define convolution and pooling !



Dealing with non standard images
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Pixel ordering is just a convention to build the index matrix



Dealing with non standard images
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Dealing with non standard images
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Rebuild the image matrix and apply weights to compute the convolution



Dealing with non standard images
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Pooling: 

- Take the index matrix 
kernel to find the 
neighbours, then 
apply pooling

- Rebuild the index 
matrix with new 
neighbours



Indexed convolution & pooling
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• The indexed convolution and pooling that we developed 
is

– A simple and very generic solution

– Can be applied to any non-standard image or detector as 
long as user knows its shape and can provide neighbours 
list

– Build neighbours index matrix once for your detector and 
you can apply specific convolution and pooling



CTA specificities – stereoscopy

• Stereoscopy : combining several telescopes images at the 

heart of IACT performances
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HESS figure (credit K. Bernlohr)

• Stacking images is not 

adapted to DL for CTA

– Different camera shapes

– Potentially tens of 

images to stack = loss 

of information

– CTA envisages to 

provide full-waveform

readout for each event.



CTA specificities - stereoscopy
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Preliminary architecture



CTA specificities - stereoscopy
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Preliminary architecture

• Other architecture may 

include recurrent 

neural networks (RNN)
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Preliminary results
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Preliminary results

loss

epochs

Comparison of the loss for regression task with hexagonal and standard  kernels
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Conclusion

• GammaLearn is a collaborative project between experts from CTA and deep 

learning

• Aiming at improving CTA performances thanks to DL techniques

• CTA specificities pushed us to develop generic solution to non-standard 

convolution kernel issue

– Available as open-source code at  https://lapp-gitlab.in2p3.fr/GammaLearn

• DL solution still under development

H2020-Astronomy ESFRI and Research Infrastructure Cluster

(Grant Agreement number: 653477).


