

23rd International Conference on Computing IN HIGH ENERGY AND NUCLEAR PHYSICS

THE PARTICLE TRACK RECONSTRUCTION BASED ON DEEP LEARNING NEURAL NETWORKS

G.Ososkov, P.Goncharov, S.Mitsyn, D. Baranov

LIT JINR, Dubna, Russia ososkov@jinr.ru

G.Ososkov et al, Deep learning for tracking CHEP-2018

NICA-MPD-SPD-BM@N

General view of the NICA complex with the experiments MPD, SPD, BM@N

Baryonic Matter at Nuclotron (BM@N)

- Our problem is to reconstruct tracks registered by the GEM vertex detector with 6 GEM-stations (winter 2016 configuration) inside the magnet.
- All data for further study was simulated in the MPDRoot framework with Box generator.

7/12/2018

Problems of microstrip gaseous chambers

The general schema of construction of any GEM-station

Layer of inclined strips

Complete readout plane

The main shortcoming is the appearance of **fake hits caused by extra spurious strip crossings**. For n real hits one gains n²- n fakes

We can significantly reduce the number of observed fakes by adding a stereoangle between layers of strips (15°)

Although small angle between layers removes a lot of fakes, pretty much of them are still left

It is our input data

However too high reducing of the angle, increases the Y-coordinate error

Two-step tracking

Our last solution - two step tracking procedure: 1.Preprocessing by directed K-d tree search to find all possible track-candidates as clusters joining all hits from adjacent GEM stations lying on a smooth curve.

2.Deep recurrent network trained on the big simulated dataset with 82 677 real tracks and 695 887 ghosts classifies track-candidates in two groups: true tracks and ghosts.

Gated recurrent unit (GRU) is a

simplified version of LSTM networks

GRU with 3 layers is able to write or forget information by gates with a trainable degree of selectivity to operate on problems going through time

1) Directed K-d Tree Search

Results of two-step approach

After series of experiments we found the best architecture and parameters for our deep neural classifier of track-candidates.

We trained our network on two datasets:

- small dataset with 80K real tracks and 80K ghost seeds
- big dataset with 82 677 real tracks and 695 887 ghosts
- Testing efficiency is the same for both attempts, trained on small and big dataset, and equals to 97.5%.
- Trained RNN can currently process 10 666 track-candidates in one second on the single Nvidia Tesla M60 from HybriLIT cloud service and 34 602 trackcandidate/sec using Tesla V100 on the Dubna supercomputer GOVORUN.

Reasons for one stage end-to-end trainable model

- The first phase of the event reconstruction K-d tree preprocessing takes a lot of time (>1 minute for 100 tracks event) on the usual laptop, because it should be rebuilt from scratch every time!
- 2. The sinus smoothness criterion of the K-d tree preprocessing is too liberal and lefts too many of ghosts.
- 3. The **size of sighting ellipses should be tunable** depending on particular track parameters, such as its curvature.
- 4. New method have to be **not depended on detector's configuration.**

Emerging problem is **to develop a new deep net simultaneously combining both**

- 1) prediction of the continuation of track-candidate;
- 2) classifying whether it belongs to true track or not.

This new classification network with much less number of parameters we named **TrackNet**.

TrackNet features

We introduce the regression part consisting of four neurons, two of which **predict the point of the center of ellipse on the next coordinate plane**, where to search for track-candidate continuation and another two – **defines the semiaxis of that ellipse**.

G.Ososkov et al, Deep learning for tracking CHEP-2018

Custom loss function

- p' the probability of track/ghost was predicted by deep RNN
- p the label that indicates whether or not the set of points belongs to true track
- x', y' the center of ellipse, predicted by network
- *x*, *y* the next point of the true track segment
- *R1, R2* semiaxis of the ellipse
- $\max(\lambda_1, 1 p), p$ coefficients that weights classification and regression parts, e.g. we **don't need to search for the continuation of track candidate if it is a ghost**
- λ_{1-3} weights for each part of equation

$$FL(p, p') = \begin{cases} -\alpha (1 - p')^{\gamma} \log(p') & \text{if } p = 1\\ -(1 - \alpha) p'^{\gamma} \log(1 - p') & \text{otherwise} \end{cases}$$

FL is a **balanced focal loss** with a weighting factor $\alpha \in [0, 1]$ – common method for addressing class imbalance. We set $\alpha = 0.95$, The focusing parameter γ (we set it to 2) smoothly adjusts the rate at which easy examples are down-weighted.

Dataset and Training setup

To prepare the dataset, we were guided by the events of C+C interactions, specific for BM@N run 2016

- 1) Simulated 15k events with 20-30 tracks per event using Box generator
- 2) Ran K-d tree search for obtaining track-candidates
- 3) Compared reconstructed points with the simulated ones to find true tracks
- 4) Labelled the all track candidates with ones (for true track) and zeros (for not)

Eventually: 82 677 real tracks and 695 887 ghosts

Worth to note, that each of track-candidates in dataset was labelled by K-d tree as potential track, so you can see that the sinus criterion is not very accurate.

In every iteration the seeds were were divided into three groups of track-segments containing different number of points (from 2 to 5). For each of these seeds network should predict the probability that set of points belongs to a true track (except 2 points) and also predict the area, where to search for the continuation.

RNN have been trained with [$\lambda_1 = 0.5$, $\lambda_2 = 0.35$, $\lambda_3 = 0.15$, $\alpha = 0.95$, $\gamma = 2$] for **100 epochs** with **batch size = 128** and **Adam optimization method**

Results

We have tested the trained neural network for the different number of points in track-segments

	3 points	4 points	5 points
Recall	98.2%	99.0%	98.3%
Precision	49.0%	57.0%	70.0%
Accuracy	88.0%	92.0%	95.2%
Ellipse square	1.67cm ²	1.64cm ²	1.91cm ²

Accuracy = efficiency is the fraction of correct predictions (becomes useless for imbalanced dataset).

Then more informative:

Recall = how many of the objects that should be marked as true tracks, are actually selected (the ability to find all true tracks in a dataset). **Precision** = how many of the objects classified as true tracks were true. One can compare the size of the **smallest station** with the size of average sighting ellipse square depending of number of hits and a track curvature (red point)

station 0 (66x41)

In the **hottest region of station 0** the **average number of hits** located in the area with the size of predicted ellipse is **1.65 hits** (for 100k events).

What about performance?

The sequential nature of RNNs and the specific shape of input data make it reasonable to execute training with the CPU

while testing and then routine usage - on GPUs

7/12/2018

Outlook

There are two main time-wasters in our method:

- sequential computations the processing time increasing with the number of stations
- searching for the hits located in ellipses

A few days ago, we found a **radically new** approach for the event processing in frame of deep learning. We invented how to embed **the whole event data to a YOLO-like** «you only look once» convolutional network, that is able to **solve the problem of end-to-end tracking**. To realize this approach we had to avoid a plenty of obstacles:

- o sequential computations,
- o fake detection,
- inevitable parameter growing, etc.

Up to now, we tested our new model on a toy-dataset and the results are very promising.

The full scheme of tracking procedure using trained TrackNet

Take target and all hits from the first station

target

7/12/2018

... and connect them together

Then pass as the input to TrackNet

with disabled classification part Classification part Station 1

To predict ellipses on the next station for every seed

Find hits located in the predicted areas

Prolong suitable seeds and remove bad ones

Then pass elarged seeds to TrackNet

Prolong again while dropping out waste

Repeat until the last station. On the last station do the final classification

Thanks for your attention!