# Adversarial event generator tuning with Bayesian Optimization

Maxim Borisyak, Andrey Ustyuzhanin

National Research University Higher School of Economics (HSE)

**Event Generator Tuning** 

#### Intro

We consider problem of tuning parameters of event generators to 'real' data:

- generating samples is expensive;
- · generator is non-differentiable.

Working example: Pythia 8 generator.

#### Approach I

#### **Event generator tuning using Bayesian optimization**

#### Philip Ilten, Mike Williams, and Yunjie Yang

Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139

- two histogram for each parameter:  $data_i$  and  $MC_i$ ;
- Bayesian Optimization on the objective:

$$\chi^2 = \sum_{i=1}^{n_{bins}} \frac{(\text{data}_i - \text{MC}_i)^2}{\sigma_{\text{data},i}^2 + \sigma_{\text{MC},i}^2}$$

 additional assumptions on distributions are required to guarantee convergence;

3

#### Approach II

# Adversarial Variational Optimization of Non-Differentiable Simulators

Gilles Louppe

G.LOUPPE@ULIEGE.BE

University of Liège, Belgium

**Kyle Cranmer** 

KYLE.CRANMER@NYU.EDU

New York University, USA

· an adversarial objective:

$$\text{Wasserstein}(F_{\text{real}}, F_{\theta}) = \sup_{d \in L_1} \mathop{\mathbb{E}}_{x \sim F_{\text{real}}} d(x) - \mathop{\mathbb{E}}_{x \sim F_{\theta}} d(x)$$

 Variational Optimization to search for distribution over generator parameters.

## Assumptions and goals

We consider Adversarial Bayesian Optimization:

no additional restrictions on distribution shapes;

#### Our primary concern is time complexity:

- sampling from the target event generator is expensive;
  - number of generator calls dominates overall complexity;
  - minimizing number of event generator calls;

• there is a configuration of generator that perfectly matches 'real' data.

Adversarial Bayesian Optimization

## **Adversarial Objective**

Jensen-Shannon distance:

$$\mathrm{JS}(P,Q) = \log 2 + \frac{1}{2} \left[ \mathop{\mathbb{E}}_{x \sim P} \log \frac{P(x)}{P(x) + Q(x)} + \mathop{\mathbb{E}}_{x \sim Q} \log \frac{Q(x)}{P(x) + Q(x)} \right] =$$

$$\log 2 - \min_{f} \text{cross-entropy}(f, P, Q)$$

· Jensen-Shannon distance can be approximated by a classifier.

## Multi-Stage Adversarial Bayesian Optimization

sequence of classifier models with increasing power:

$$\mathcal{F}_1 \subseteq \mathcal{F}_2 \subseteq \cdots \subseteq \mathcal{F}_m = \mathcal{F}$$

• classifier  $\mathcal{F}_i$  associated with 'pseudo' JS distance:

$$pJS_i(P, Q) = \log 2 - \min_{f \in \mathcal{F}_i} cross-entropy(f, P, Q)$$

$$\operatorname{pJS}_1(P, Q) \le \operatorname{pJS}_2(P, Q) \le \cdots \le \operatorname{pJS}_m(P, Q) = \operatorname{JS}(P, Q);$$

$$pJS_i(P, Q) \ge 0 \implies pJS_{i+1}(P, Q) \ge 0$$

7

## Multi-Stage Adversarial Bayesian Optimization

$$\mathrm{pJS}_i(P,\,Q) \geq 0 \implies \mathrm{pJS}_{i+1}(P,\,Q) \geq 0$$

- · 'weak' classifiers tend to require less samples;
- · 'weak' classifiers can be used to rapidly explore search space;
- $\boldsymbol{\cdot}$  these results are constraints for a more powerful classifier.

#### Multi-Stage Adversarial Bayesian Optimization

```
1: \operatorname{model}_1 = \operatorname{unconstrained} \operatorname{\mathsf{BO}} \operatorname{on} \operatorname{pJS}_1(\operatorname{data}, \operatorname{generator}_{\theta})
```

- 2: **for** k = 2, ..., m **do**
- 3:  $\operatorname{constraint}_{k}(\theta) = P\left(\operatorname{pJS}_{k-1} \leq 0 \mid \theta, \operatorname{model}_{k-1}\right)$
- 4:  $\operatorname{model}_k = \operatorname{BO} \text{ on } \operatorname{pJS}_k(\operatorname{data}, \cdot) \text{ s.t. } \operatorname{constraint}_j(\operatorname{theta}) > \tau$  ,  $j = 0, \ldots, k-1$
- 5: end for

# Experiments

#### Experiment

We follow problem statement from Ilten P, Williams M, Yang Y. Event generator tuning using Bayesian optimization. Journal of Instrumentation. 2017 Apr 27;12(04):P04028.

- $e^+e^-$  modeled by **Pythia 8**;
- values of Monash tune as parameters of the 'real' distribution;

- · 2-stage Adversarial Bayesian Optimization;
- number of samples required to avoid overfitting of the classifier is measured.

## **Experiment 1**

Target generator options:

· alphaSvalue.











#### Experiment 1: single stage





#### Experiment 1: results



#### **Experiment 2**

#### Target generator options:

- bLund;
- · sigma;
- aExtraSQuark;
- aExtraDiQuark;
- rFactC;
- rFactB.

Second group of variables from Ilten P, Williams M, Yang Y. Event generator tuning using Bayesian optimization. Journal of Instrumentation. 2017 Apr 27;12(04):P04028.

#### Experiment 2: results



# Summary

#### Summary

- Adversarial Bayesian Optimization is a promising tool for tuning event generators;
- Multi-stage Adversarial Bayesian Optimization utilizes 'weak' classifiers to incrementally constrain search space:
  - · rapid exploration of search space on first stages;
  - · late stages search for solution only among promising candidates;
  - $\cdot\,$  reduction in overall cost of optimization.

# Backup

## **Bayesian Adversarial Optimization**

- 1: initialize Bayesian Optimization
- 2: while not bored do
- 3:  $\theta \leftarrow \text{askBO}()$
- 4:  $X_{\text{train}}^{\theta}, X_{\text{test}}^{\theta} \leftarrow \text{sample}(\theta)$
- 5:  $f \leftarrow \text{train discriminator on } X_{\text{train}}^{\theta} \text{ and } X_{\text{train}}^{\text{real}}$
- 6:  $\mathcal{L} \leftarrow \frac{1}{2 \cdot m} \left[ \sum_{i=1}^{m} \log f(X_{\text{test}}^{\theta, i}) + \sum_{i=1}^{m} \log (1 f(X_{\text{test}}^{\text{real}, i})) \right]$
- 7:  $\operatorname{tellBO}(\theta, \log 2 \mathcal{L})$
- 8: end while

#### **Possible Caveats**

- · constraints are observed by authors to mess with GP;
- without assumption  $\exists \theta : JS(generator(\theta), real) = 0$ :
  - it is likely that the method would still work (modifying constraints) if classifiers are from the same family of algorithms;
  - it is possible, that BO with weak classifier carries no information about BO with a strong classifier.

## **Expected Improvement with Constraints**

Problem:

$$\mathrm{EI}(x) \rightarrow \mathrm{min};$$
  
s.t.  $g(x) \ge 0.$ 

· improvement is impossible if constraints are violated:

$$CEI(x) = P(g(x) \ge 0) \cdot EI(x) + P(g(x) < 0) \cdot 0$$

• constraints in our case:  $model_i(x) \leq 0$ .

Gelbart, M.A., Snoek, J. and Adams, R.P., 2014. Bayesian optimization with unknown constraints. arXiv preprint arXiv:1403.5607.

#### Technical details

- training set is incrementally extended until over-fitting becomes insignificant.
- · 2 stage ABO:
  - 1 stage: XGboost with 1 tree and max depth = 3;
  - 2 stage: XGboost with 20 tree and max depth = 6.

#### **Experiment 1**

