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Event Generator Tuning



Intro

We consider problem of tuning parameters of event generators to ’real’ data:

• generating samples is expensive;
• generator is non-differentiable.

Working example: Pythia 8 generator.
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Approach I

• two histogram for each parameter: datai and MCi;
• Bayesian Optimization on the objective:

χ2 =

nbins∑
i=1

(datai −MCi)2

σ2
data,i + σ2

MC,i

• additional assumptions on distributions are required to guarantee
convergence; 3



Approach II

• an adversarial objective:

Wasserstein(Freal,Fθ) = sup
d∈L1

E
x∼Freal

d(x)− E
x∼Fθ

d(x)

• Variational Optimization to search for distribution over generator
parameters.
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Assumptions and goals

We consider Adversarial Bayesian Optimization:

• no additional restrictions on distribution shapes;

Our primary concern is time complexity:

• sampling from the target event generator is expensive;
• number of generator calls dominates overall complexity;
• minimizing number of event generator calls;

• there is a configuration of generator that perfectly matches ’real’ data.
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Adversarial Bayesian Optimization



Adversarial Objective

Jensen-Shannon distance:

JS(P,Q) = log 2 +
1
2

[
E

x∼P
log

P(x)
P(x) + Q(x) + E

x∼Q
log

Q(x)
P(x) + Q(x)

]
=

log 2−min
f

cross-entropy(f,P,Q)

• Jensen-Shannon distance can be approximated by a classifier.
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Multi-Stage Adversarial Bayesian Optimization

• sequence of classifier models with increasing power:

F1 ⊆ F2 ⊆ · · · ⊆ Fm = F

• classifier Fi associated with ’pseudo’ JS distance:

pJSi(P,Q) = log 2−min
f∈Fi

cross-entropy(f,P,Q)

pJS1(P,Q) ≤ pJS2(P,Q) ≤ · · · ≤ pJSm(P,Q) = JS(P,Q);

pJSi(P,Q) ≥ 0 =⇒ pJSi+1(P,Q) ≥ 0
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Multi-Stage Adversarial Bayesian Optimization

pJSi(P,Q) ≥ 0 =⇒ pJSi+1(P,Q) ≥ 0

• ’weak’ classifiers tend to require less samples;
• ’weak’ classifiers can be used to rapidly explore search space;
• these results are constraints for a more powerful classifier.
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Multi-Stage Adversarial Bayesian Optimization

1: model1 = unconstrained BO on pJS1(data, generatorθ)
2: for k = 2, . . . ,m do
3: constraintk(θ) = P

(
pJSk−1 ≤ 0 | θ,modelk−1

)
4: modelk = BO on pJSk(data, ·) s.t. constraintj(theta) > τ , j = 0, . . . , k− 1
5: end for
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Experiments



Experiment

We follow problem statement from Ilten P, Williams M, Yang Y. Event generator
tuning using Bayesian optimization. Journal of Instrumentation. 2017 Apr
27;12(04):P04028.

• e+e− modeled by Pythia 8;
• values of Monash tune as parameters of the ’real’ distribution;

• 2-stage Adversarial Bayesian Optimization;
• number of samples required to avoid overfitting of the classifier is measured.
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Experiment 1

Target generator options:

• alphaSvalue.
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Experiment 1: stage 1
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Experiment 1: stage 1
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Experiment 1: stage 2
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Experiment 1: stage 2
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Experiment 1: single stage
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Experiment 1: results
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Experiment 2

Target generator options:

• bLund;
• sigma;
• aExtraSQuark;
• aExtraDiQuark;
• rFactC;
• rFactB.

Second group of varables from Ilten P, Williams M, Yang Y. Event generator tuning using Bayesian
optimization. Journal of Instrumentation. 2017 Apr 27;12(04):P04028.
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Experiment 2: results
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Summary



Summary

• Adversarial Bayesian Optimization is a promising tool for tuning event
generators;

• Multi-stage Adversarial Bayesian Optimization utilizes ’weak’ classifiers to
incrementally constrain search space:

• rapid exploration of search space on first stages;
• late stages search for solution only among promising candidates;
• reduction in overall cost of optimization.
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Backup
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Bayesian Adversarial Optimization

1: initialize Bayesian Optimization

2: while not bored do

3: θ ← askBO()

4: Xθ
train,Xθ

test ← sample(θ)

5: f← train discriminator on Xθ
train and Xreal

train

6: L ← 1
2·m

[∑m
i=1 log f(Xθ,i

test) +
∑m

i=1 log(1− f(Xreal,i
test ))

]
7: tellBO(θ, log 2− L)

8: end while
21



Possible Caveats

• constraints are observed by authors to mess with GP;
• without assumption ∃θ : JS(generator(θ), real) = 0:

• it is likely that the method would still work (modifying constraints) if classifiers
are from the same family of algorithms;

• it is possible, that BO with weak classifier carries no information about BO with
a strong classifier.
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Expected Improvement with Constraints

Problem:

EI(x) → min;

s.t. g(x) ≥ 0.

• improvement is impossible if constraints are violated:

CEI(x) = P(g(x) ≥ 0) · EI(x) + P(g(x) < 0) · 0

• constraints in our case: modeli(x) ≤ 0.

Gelbart, M.A., Snoek, J. and Adams, R.P., 2014. Bayesian optimization with unknown constraints. arXiv
preprint arXiv:1403.5607. 23



Technical details

• training set is incrementally extended until over-fitting becomes
insignificant.

• 2 stage ABO:
• 1 stage: XGboost with 1 tree and max depth = 3;
• 2 stage: XGboost with 20 tree and max depth = 6.
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Experiment 1
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