
The CMS muon system presently consists of three detector technologies equipping different regions of the spectrometer. Drift Tube chambers (DT) are installed in the muon system barrel, 
while Cathode Strip Chambers (CSC) cover the end-caps; both serve as tracking and triggering detectors. Moreover, Resistive Plate Chambers (RPC) complement DT and CSC in barrel and 
end-caps respectively and are mostly used in the trigger. Finally, Gas Electron Multiplier (GEM) chambers are getting installed in the muon spectrometer end-caps at different stages 

of the CMS upgrade programme. The CMS muon system has been operated successfully during the two LHC runs allowing to collect a very high fraction of data whose quality fulfills the 
requirements to be used for physics analysis. Nevertheless the workflows used nowadays to run and monitor the detector are rather expensive in term of human resources. Focus is 

therefore being put in improving such workflows, both by applying automated statistical tests and exploiting modern machine learning algorithms, in view of the future LHC runs. The 
ecosystem of tools presently in use will be presented, together with the status of the art of the developments toward more automatized monitoring and the roadmap for the future.

DT: |η| < 1.2 
Trigger and reconstruction 
The DTs are segmented in 
long aluminum drift cells. 
The position of a traversing 

muon is determined by 
measuring the drift time to 

the anode wire in the 
center of each cell, with an 
optimally shaped electric 

field
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CSC: 0.9 < |η| < 2.4 
Trigger and reconstruction 

The CSCs operate as standard multi-wire 
proportional counters with a finely segmented 
cathode strip readout. The strips run radially 
outward to measure the muon position in the 

bending plane, while the anode wires provide a 
measurement in R. Good performance and 

resistant to high particle rates

RPC: |η| < 1.9 
Trigger and reconstruction 

The RPCs are double-gap chambers operated in avalanche mode, at 
high electric field. They use bakelite electrodes with a high bulk 
resistivity. RPCs are mainly used for accurate timing and fast 

triggering and bunch crossing assignment
➤ A critical asset to guarantee a high-quality data for physics analyses (online and offline) 

➤ Online DQM assess data goodness and identifies emerging problems in the detector 

➤ Data with poor quality are flagged by eyeballing DQM GUI and comparing a set of 
histograms to a reference good sample 

➤ Problems with current strategy:  

➤ Delay: human intervention and tests require collecting sufficient statistics 

➤ Volume budget: amount of quantities a human can process in a finite time period 

➤ Human driven decision process: alarms based on shifter judgment 
➤ Changing running conditions: reference samples change over time 

➤ Manpower: the effort to train a shifter and maintain instructions 

➤ R&D is ongoing to automate the CMS DQM procedure by  looking also at innovative  
machine and deep learning techniques

Enhancement of the 
 forward region 

GE1/1: 1.6 < |η| < 2.2 
Trigger and reconstruction 

Baseline detector for GEM project 
36 super-chambers (SC) per 

      endcap, each super-chamber spans 10° 
One super-chamber is made of  

      2 back-to-back triple-GEM detectors 
Installation: LS2 (2019-20) 

Slice test in 2017-2018

AutoDQM
➤ Developed a tool called AutoDQM to assist DQM shifters in looking for hard to spot problems 

➤ User specifies reference run and the tool flags plots using statistical tests (bin-by-bin pull 
values, Kolmogorov-Smirnov test, etc.) 

➤ It is configurable for all the subsystems, no need to manually scan hundreds of plots 

➤ User still needs to specify reference run: time-consuming and not always an obvious choice

Machine Learning for CSC DQM
➤ Problem: hundreds of unique 1D DQM 

histograms. How to detect anomalous ones?  

➤ Want an algorithm that simply flags a DQM 
histogram as potentially problematic, given 
nothing but the histogram itself 

➤ Shouldn’t require manual labeling of 
thousands of DQM plots to train algorithm  

➤ Should be easily adaptable to new 
subsystems/plots  

➤ Should be able to handle a wide variety of 
running conditions  

➤ Shouldn’t depend on a large number of 
example bad plots (these are quite rare), 
and should be sensitive to never-before-
seen anomalies

➤ Idea: Treat input histograms as (nbins)-
dimensional points and reduce to just a 
few dimensions using Principal Component 
Analysis (PCA) 

➤ Find that all DQM plots almost completely 
described by first 1-3 principal components  

➤ Since the first few principal components 
describe the “normal” variation of the 
histograms, normal runs are reconstructed 
quite well from just these components 

➤ “Bad” or “outlier” runs cannot be described 
well from these components, so the 
reconstructed histogram will not match the 
original well 

➤ Use sum-of-squared-errors as a measure of 
similarity between histogramsMachine Learning for DT DQM

➤ Occupancy plots are among the most important DQM plots. They show the frequency of 
hits in given detector channels and are used to quickly identify and diagnose 
problems 

➤ Very high-dimensional data → standard outlier detection techniques give poor 
performance. Utilize both supervised and semi-supervised neural-network methods 
based on the use-case 

➤ More details in the talk by Adrian Alan Pol on monday (July 9): “Online detector 
monitoring using AI: challenges, prototypes and performance evaluation for 
automation of online quality monitoring of the CMS experiment exploiting machine 
learning algorithms”

➤ Local approach: data collected in each muon chamber  layer are 
treated independently from the other layers 

➤ Preprocess and standardize: interpolate to make          every layer 
the same size, median filter to remove isolated                        
faulty channels, max scaling 

➤ Train a 1D 3x1 CNN using each 47-channel                             
muon chamber layer as a sample 

➤ Compared to numerous benchmark models on withheld test set: CNN 
gives best performance

➤ Regional approach: all layers are considered simultaneously in a 
muon chamber, but each muon chamber is considered independently 
from the others 

➤ Few examples of this mode of failure                                       
→ fully supervised approach will not                                  
work, try a semi-supervised                                                       
AutoEncoders (AE) 

➤ All models minimize the mean squared error of input and 
reconstructed samples → high reconstruction error on samples      
that are problematic

Machine Learning for Barrel L1Muon Trigger Monitoring

Clear problem with 
this chamber

Difference is hard to 
spot by eye

Plot for the test run Same plot for the reference run

Blue is the original, unmodified histogram 
Red is the “reconstructed” histogram from the first few principal components
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➤ L1 and L1Muon trigger are implemented in custom electronics: 
many input components and multiple channels of electronic 
communication that can fail, leading to “anomalous” trigger 
rates 

➤ Important to monitor the system in real time and quickly  
identify and fix any problems 

➤ GOAL: exploit ML/DL techniques to develop an innovative tool 
for the L1Muon Barrel Trigger rate monitoring in CMS 

➤ The algorithm must: 

➤ correlate trigger rates and instantaneous luminosities 
coming from different Muon detectors and electronics 
components 

➤ identify chamber(s) with rate problem(s) 

➤ correlate different sources of information to make a 
diagnosis of the issue 

➤ Work is ongoing with promising results especially from the semi-
supervised (AutoEncoder) and completely unsupervised 
approaches (LOF, K-Means clustering) 

➤ Ultimately, unsupervised approach is probably best as it can 
in theory generalize to never-before-seen problems

Color is by run 
number (i.e. time). 
Different clusters 
correspond to 

different groups 
of runs with slight 

differences 
configuration, 

leading to small 
shifts in the 
histograms

First 3 Principal Components First 2 Principal Components

Example of anomaly in 
the DT local trigger rate

CMS Data Quality Monitoring system
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