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Track reconstruction @ CMS
In CMS the tracking algorithm consists of an iterative procedure, in which tracks are reconstructed according to
progressively looser quality criteria starting from hits on the silicon tracker detector.
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ONLINE  RECONSTRUCTION (HLT)

Practically the same reconstruction procedure as the one run offline. It has to undergo stringent time limits : O(100) ms.
It is based on pixel-only reconstruction.

Tracks
Selection

In CMS the tracking algorithm consists of an iterative procedure, in which tracks are reconstructed
according to progressively looser quality criteria starting from hits on the silicon tracker detector.
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o 100 KHz in / 1 KHz out

o ~ 500 KB / event

o Processing time: ~30 ms

o Simplified global reconstruction

o Software implemented on CPUs

High Level Trigger (HLT)

ONLY ABOUT 1000 eventS/SEC [@ ~ 1
MB/evenT] CAN BE RECORDED ON DISK



What’s next?



What’s next?

Increased DETECTOR COMPLEXITY (SINCE MARCH 2017)

INSTANTANEOUs LUMINOSITY & SIMULTANEOUS COLLISIONS (PILE-UP) INCREASE

The already complex online and
offline track reconstruction has to
deal not only with a much more
crowded environment but also with
data coming from a more complex
detector.

T=	260ms

2017

<µ>	=	33
𝓛 = 𝟓 $ 𝟏𝟎𝟑𝟒𝒄𝒎𝟐𝒔-𝟏

< 𝑷𝑼 > ~	𝟐𝟎𝟎

10 layers (6 endcap + 4 barrel)
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Doublets Generation

Pixel	Hits
Doublet

generation
Cellular	

Automaton
Hits Cells

Doublet seeds generation: bottleneck due to huge combinatorial background.

But doublet selection is based only on geometrical compatibilty checks.

For a single 𝐭𝐭̅ at 𝐬� = 𝟏𝟑TeV with < 𝐏𝐔 >	= 𝟑𝟓	 simulated event: 𝐎(𝟏𝟎𝟓)doublets produced with fake ratio
~𝐎(𝟏𝟎𝟎) corresponding to 𝐎(𝟏𝟎𝟎𝟎) true doublets.
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There is some more information…
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Each hit is then a 2D pixel
image centred on the centre of
charge. (15x15)

Typical pattern recognition problem
(true/fake classification): suitable for
a Convolutional Neural Network
approach

Each doublet is built from a couple of hits on the silicon pixel tracker detector. Each hit is not simply a point on
the detector but it is a collection of pixels (in 2D) on or off. Each pixel is associated with an ADC level (16 bit)
proportional to the charge deposited by a particle.
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Convolutiona Neural Networks
Convolutional Neural Networks are a specialized kind of neural networks for processing data that has a grid-like structure,
such as 2D images. The building block of a CNNs is a layer that uses discrete convolution in place of general matrix
multiplication.

Pooling: its function is to progressively reduce the spatial
size of  the representation.

In our usecase the CNN acts as a binary classifier (signal or background) and reduce the whole picture to a single score
correspodent to ptrue(x) .

Fully connected: Neurons in a fully connected layer have
full connections to all activations in the previous layer, as
seen in regular Neural Networks. Reduce input to a 
unique score: softmax.
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Ttbar dataset

Generation of 𝒕𝒕̅ at 𝒔� = 𝟏𝟑TeV with < 𝑷𝑼 >	= 𝟑𝟓	 simulated events (via PYTHIA integrated in CMS reconstruction
software, CMSSW): 𝑶(𝟏𝟎𝟓)doublets produced with fake ratio ~𝑶(𝟏𝟎𝟎) equals to a 𝐎(𝟏𝟎𝟎𝟎) true doublets.

Association RECO - MC
1. all matched tracking particles track hits
2. all doublets produced
3. true doublets = doublets formed by hits from the same tracking particle

To each doublet are associated:
o two 15x15 images (one for inner and one for outer hit)
o set of local informations (x,y,z, charge,, …)

2.5 millions doublets generated (about 1000 events )
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Data prepocessing
Make of use of the layer structure of the detector to extend each single doublet from two pictures to 20
channels, one per each layer (6 barrel + 4 endcap)
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Channels: a common picture is
usually a superimposition of different
color levels. E.g. RGB levels.

E.g. A doublet on barrel2 and forward endcap3
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The model

A single doublet is a 20 levels image. The model concatenates:
• CNN architecture stack of  convolutional layers (4) and max pooling (2)
• “DENSE” architecture dense layers (2) fed with the 1-dim reduced images + doublets infos (inX,inY,inZ)

Dropouts & early stopping to prevent overfitting

Train & val datasets balanced (0.5)
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Results - I
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Results on 2.5 millions doublets training

Accuracy	(training	on	250k	dataset) Cross	Entropy	(training	on	250k	dataset)

𝐴𝐶𝐶 =
𝑉𝑃 + 𝑉𝑁
𝑃 + 𝑁 > 0.90
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Results on 2.5 millions doublets training

Whole	Dataset Training @	Max	Acc Rej @	Eff Eff		@ Rej

AUC ACC Efficiency Rejection 0.99 0.999 0.99 0.5

Test 0.921 0.90 0.96 0.91 0.81 0.65 0.54 0.99

Val 0.919 0.90 0.95 0.91 0.81 0.66 0.54 0.99

Train 0.920 0.91 0.96 0.91 0.81 0.65 0.55 0.99



Results - II
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Results - III
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Setting ADC levels to 0 or 1 only for turned
off and on pixels. Black and white model.

Comparing with the colorful model with ADC
levels

Testing with other MC PYTHIA recipes (see
backup)
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ROC	Curve	(full	TTbar PU35	dataset	training)
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Results - IV
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Conclusions and perspectives

CNN techniques for mitigating combinatorial explosion look very promising

Integration in the CMS reconstruction framework

Verification of  the effect on the downstream track reconstruction

Exploration of  different hardware architecture for fast inference

Input variables ranking

Possible extension to PID @ silicon pixel detector

Ongoing work and next steps
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"I am putting myself to the fullest possible use, which is all I 
think that any conscious entity can ever hope to do"

HAL9000 

THANK YOU



BACKUP



Two level event selection @ CMS

o 40 MHz in/ 100 KHzout

o ~ 500 KB/ event

o Processing time: ~10 μs

o Basedon coarse local reconstructions

o FPGAs/ Hardware implemented

L1 TRIGGER

o 100 KHz in/ 1 KHzout

o ~ 500 KB/ event

o Processing time: ~30 ms

o Basedon simplified global reconstructions

o Software implementedonCPUs

High Level Trigger (HLT)

ONLY ABOUT 1000 eventS/SEC [@ ~ 1 MB/evenT] CAN
BE RECORDED ON DISK

The Compact Muon Solenoid (CMS) is a
general purpose detector designed for the
precision measurement of leptons,
photons, and jets, among other physics
objects, in proton-proton as well as heavy
ion collisions at theCERNLHC
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The doublet features

headLab =	["run","evt","detSeqIn","detSeqOut","inX","inY","inZ","outX","outY","outZ",	"inPhi","inR",	"outPhi",	
"outR",	"detCounterIn",	"detCounterOut",	"isBarrelIn",	"isBarrelOut",	"layerIn",	"ladderIn",	"moduleIn",	
"sideIn","diskIn",	"panelIn","bladeIn",”	
layerOut","ladderOut","moduleOut","sideOut","diskOut","panelOut","bladeOut","isBigIn","isEdgIn","isBadIn","isBigO
ut",	”isEdgOut","isBadOut",	"isFlippedIn","isFlippedOut",	"iCSize","pixInX","pixInY",	"inClusterADC",	
"iZeroADC","iCSize",	"iCSizeX","iCSizeY",	"iOverFlowX",	"iOverFlowY","oCSize","pixOutX",	"pixOutY","outClusterADC",	
"oZeroADC","oCSize","oCSizeX","oCSizeY"","oOverFlowX","oOverFlowY","diffADC"]

63	features defined for	each doublet [true or	fake]	that may be	used as additional features to	the	pixel	pad

450	ADC pixels [2x15x15	pads]
inPixLab =	["inPix1","inPix2”,	.	.	.	,	“inPix224","inPix225"]
outPixLab =	["outPix1","outPix2”,	.	.	.	,"outPix224","outPix225"]

24	labels	defined	only	for	MC	matched	doublets
tailLab =	["idTrack","px","py","pz","pt","mT","eT","mSqr","rapidity","etaTrack",	"phi",	"pdgId",	
"charge",	"noTrackerHits",	"noTrackerLayers","dZ","dXY","Xvertex","Yvertex",	"Zvertex",	
"bunCross",	"isCosmic",	"chargeMatch",	"sigMatch"]

Normalization	with	incident	angle
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MC Recipes - I 
QCDprocesses recipe
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MC Recipes - II 
TTbarprocesses recipe
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MC Recipes - III 
ZEEprocesses recipe

23rd CHEP International Conference 8-12 Jul 2018 – Sofia                                            B5


