
INTERACTIVE, SCALABLE, REPRODUCIBLE
DATA ANALYSIS WITH CONTAINERS,
JUPYTER, AND PARSL

ANNA WOODARD*, YADU BABUJI, KYLE CHARD, IAN FOSTER, DANIEL S.
KATZ, MIKE WILDE, JUSTIN WOZNIAK

*annawoodard@uchicago.edu

mailto:annawoodard@uchicago.edu

Parsl is a Python-based workflow
system.

WHAT
IS
PARSL?

ANNA WOODARD /15

“TRADITIONAL” ANALYSIS BATCH SUBMISSION IN HEP

�3

time

manually
produce
submit
script for
specific
Tier 2/
Tier 3 {

assumes fixed execution resources

pro
ce

ss
ing

step A step B step C

dependencies resolved by
manually running steps
sequentially

time

HOW IS PARSL
DIFFERENT?

ANNA WOODARD /15

PARSL BASICS

�5

pip install parsl
future

Python app

Bash app

▸ Pure python; easy installation

▸ Rather than define code/input/
output mapping externally, the user
annotates functions to make Parsl
apps

▸ Bash apps call external
applications

▸ Python apps call Python functions

▸ Apps return “futures”: a proxy for a
result that may not yet be available

ANNA WOODARD /15

RICH EXPRESSION OF DEPENDENCIES

�6

Apps run concurrently,
respecting data
dependencies via futures.
Implicit parallel
programming!

f(A, B)

CA

B
f(B)

D

f(C, D)

E

f(D)

f(C, E)

G
f(E)

H

f(E)
I

f(E)
J

Dynamic: apps can
create apps! Apps can
be recursive!

f(G, H, I, J)

G

f(H, I, J)

H

F

ANNA WOODARD /15

SEPARATION OF CODE AND EXECUTION

�7

Parsl scripts are
independent of where
they run. Write once, run
the same script locally,
on grids, clouds, or
supercomputers!

A single script may concurrently
use separate pools of resources,
with different execution models

Pilot jobs

Local thread pool

Supported providers:
AWS, Azure, Google
Cloud, Slurm, Torque,
HTCondor, Cobalt

*Note the format of this configuration will be supported in Parsl 0.6, being released this week.

ANNA WOODARD /15

PARSL FEATURES

�8

▸ Apps can be shared as libraries

▸ Elasticity: resources used are scaled up and down according to demand
automatically

▸ App caching and checkpointing: re-use results if app is called with the same
inputs (record of inputs and outputs = provenance capture!)

▸ Workers can be launched in Docker containers (re-used for multiple apps);
Docker/Shifter/Singularity/etc containers can be used with wrappers for
per-app containerization

▸ Data transfer: Globus, HTTP, FTP

PARSL IS ALREADY BEING USED IN A VARIETY OF
DOMAINS.

WHY NOT ADD HEP?

ANNA WOODARD /15

WHAT DO HEP TASKS NEED?

�10

requirement solution used

specific OS / run environment vc3-builder (starts Singularity containers
if they are needed) [1]

CVMFS mounted in userspace Parrot (via vc3-builder) [2]

HEP software stack + user code sandbox wrapper [3]

[1] http://virtualclusters.org  
 https://indico.cern.ch/event/587955/contributions/2937282/ (CHEP presentation, Kenyi Hurtado) 
 https://github.com/vc3-project/vc3-builder/
[2] https://ccl.cse.nd.edu/software/parrot/
[3] https://github.com/NDCMS/lobster

http://virtualclusters.org
https://indico.cern.ch/event/587955/contributions/2937282/
https://github.com/vc3-project/vc3-builder/
https://ccl.cse.nd.edu/software/parrot/
https://github.com/NDCMS/lobster

ANNA WOODARD /15

EXAMPLE IMPLEMENTATION FOR CMSSW+PARSL

�11

CMS-specific decorator
(this is an example [1];
could be modified for
other experiments)

…
vc3-builder cache

Parsl task
wrapper (user code)
container (OS, CVMFS)

worker

[1] https://github.com/annawoodard/parslcms

Parsl task
wrapper (user code)
container (OS, CVMFS)

worker

https://github.com/annawoodard/parslcms

ANNA WOODARD /15

WHY BOTHER WITH NOTEBOOKS?

�12

▸ Traditional HEP analysis paradigm: code, results, and documentation are separate.
Hard keep synchronized!

▸ Notebooks allow these to be combined into a single narrative

▸ Web interface facilitates sharing

▸ Interactive plotting

▸ Native caching: fast, iterative development

▸ Jupyter Lab: text editors, terminals, data file viewers, and other custom
components side by side with notebooks in a tabbed work area!

▸ Barriers to notebook adoption in HEP: complex software stacks, use of distributed
computing 
 
 

ANNA WOODARD /15

PARSL + NOTEBOOKS FOR HEP

�13[1] https://github.com/annawoodard/pnpfit/blob/master/run.ipynb

Real-world
example [1]
implementing
part of my
dissertation
workflow in
Parsl

https://github.com/annawoodard/pnpfit/blob/master/run.ipynb

ANNA WOODARD /15

SUMMARY

�14

▸ Parsl’s implicit dataflow model allows for simple expression of complex
dependencies

▸ In Parsl, code is separate from the specification of computing resources: this
makes Parsl scripts portable and scalable

▸ Parsl has a number of useful features: app caching, elasticity, container support,
data transfer, and more

▸ To extend Parsl for use in HEP, an example has been shown which wraps apps in
a Singularity container with CVMFS mounted via VC3-builder, and the CMSSW
user code set up via sandboxing. The workflow is orchestrated via a Jupyter
notebook, which facilitates easy sharing and documentation, and fast iterative
development.

http://parsl-project.org
STAY IN
TOUCH!

BACKUP

ANNA WOODARD /15

“TRADITIONAL” GRID SUBMISSION IN HEP

�17

user explicitly defines:

input dataset method for splitting dataset
into chunks

code to execute on each chunk

