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Deep Skies
Collaboration

Informal astrophysics group explori
useful ML applications in
astrophysics
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Cutting through the hype

Image data Tree-like data
(i.e. same as classifying cat/dog) (e.g. graph convolution

applications limited)

Public data releases with docs Limited data release, often
requires membership

Toolchain more friendly to ML ROOT




What new measurement does ML open?
Within direct-detection DM, limited impact.

| will discuss one neat example (which
coincidentally first plenary said used widely
elsewhere but not in HEP)



Matter Project
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What is XENON?

Liguid XENON dark matter detector
instrumented with 248 photomultipliers
and 10-ns flash ADCs. We make a world-
leading new experiment every few years.



https://arxiv.org/abs/1805.12562
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https://arxiv.org/abs/1805.12562

Dark Matter Search Results from a One Tonnex Year Exposure of XENONI1T

arXiv:1805.12562v1 [astro-ph.CO] 31 May 2018

TABLE I: Best-fit expected event rates with 278.8 days live-
time in the 1.3 t fiducial mass, 0.9 t reference mass, and 0.65 t
core mass, for the full (c¢S1, ¢S2y) ROI and, for illustration,
in the NR signal reference region. The table lists each back-
ground (BG) component separately and in total, the observed
data, and the expectation for a 200 GeV /c* WIMP prediction

assuming the best-fit og;r = 4.7 x 10~*7 cm?.

Mass 1.3¢ 1.3 ¢ 0.9t 0.65 t
(cS1, cS2) Full Reference Reference Reference
ER 627+18 1.624+0.30 1.12+0.21 0.60+£0.13
neutron 1.43+£0.66 0.77£0.35 0.41+0.19 0.1440.07
CEvNS 0.05+0.01 0.03+0.01 0.02 0.01
AC 0.4710-27  0.1079:9¢  0.0675:33  0.0419-92
Surface 106+£8 4.84+0.40 0.02 0.01
Total BG 7354120 7.364+0.61 1.624+0.28 0.80+0.14
WIMPrest-ft 3.56 1.70 1.16 0.83

Data 739 14 2 2




1. The optics and response
isn’t uniform for S2s
1. Hard to measure
reflectivity Teflon ex
situ
2. There is no internal
calibration
3. When doing ML, including
what we do know is not
straightforward
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ML Challenge: Photosensors locations in
2D that aren’t grid
— Sporadic spacing hard

- Image not 2D but rather 248D
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ach photosensor represents
Input dimension

Looking for embedding

IRQS%RZ




Each photosensor represents

Input dimension

Looking for embedding
R128%R2

Key insight: sensors near in 2D see similar
signals, so sensor dimensions correlated




Dimensionality reduction

Often have higher dimensional data that we know
has a low-dimensional representation

3D—2>2D: how to flatten? i.e. preserve neighbors

Swiss roll
“Manifold learned”




Baseline

Fig 3: TPF point field (space C)
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Dimensionality reduction:
Principal Component Analysis

Fig 36: pca B




Dimensionality reduction:
Local linear embedding

Fig4: B LLE
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Scale off.... now can use physics knowledge!!



Stretching image

Fig4: B LLE
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Triangulation interpolation from known positions in learned and lab space



Applications / Conclusion

* DAQ: can find flipped channels

* Can “learn” optics/response of uncalibratable
detector

e Can be used for detector alignment

* Only assumption neighborhoods preserved

* P.S. ask me about spatial statistics and Ripley K functions
if you ever want to check your manifold after learning on
‘uniform’ distribution



