Cosmic Frontier and machine learning

C. Tunnell (U. Chicago and Rice University) July 4th, 2018

Caveat: all data either shown publicly or tweaked to make non-experiment specific

Cosmic Frontier and machine learning 12 minute on manifold learning

C. Tunnell (U. Chicago and Rice University) July 4th, 2018

Caveat: all data either shown publicly or tweaked to make non-experiment specific

Deep Skies Collaboration

Informal astrophysics group exploring useful ML applications in astrophysics XENON1T

SPT CMB

Particle

DES Optical

Cutting through the hype

Astronomy	Particle physics
Image data (i.e. same as classifying cat/dog)	Tree-like data (e.g. graph convolution applications limited)
Public data releases with docs	Limited data release, often requires membership
Toolchain more friendly to ML	ROOT

What <u>new</u> measurement does ML open?

Within direct-detection DM, limited impact.

I will discuss one neat example (which coincidentally first plenary said used widely elsewhere but not in HEP)

What is XENON?

Liquid XENON dark matter detector instrumented with 248 photomultipliers and 10-ns flash ADCs. We make a worldleading new experiment every few years.

arXiv:1805.12562

What is XENON?

Liquid XENON dark matter detector instrumented with 248 photomultipliers and 10-ns flash ADCs. We make a world-

Dark Matter Search Results from a One Tonne×Year Exposure of XENON1T

TABLE I: Best-fit expected event rates with 278.8 days livetime in the 1.3 t fiducial mass, 0.9 t reference mass, and 0.65 t core mass, for the full (cS1, cS2_b) ROI and, for illustration, in the NR signal reference region. The table lists each background (BG) component separately and in total, the observed data, and the expectation for a 200 GeV/c² WIMP prediction assuming the best-fit $\sigma_{SI} = 4.7 \times 10^{-47}$ cm².

Mass	$1.3 \mathrm{t}$	$1.3 \mathrm{t}$	0.9 t	0.65 t
$(cS1, cS2_b)$	Full	Reference	Reference	Reference
ER	627 ± 18	1.62 ± 0.30	1.12 ± 0.21	$0.60 {\pm} 0.13$
neutron	$1.43 {\pm} 0.66$	$0.77 {\pm} 0.35$	$0.41 {\pm} 0.19$	$0.14{\pm}0.07$
$\mathrm{CE}\nu\mathrm{NS}$	$0.05 {\pm} 0.01$	$0.03 {\pm} 0.01$	0.02	0.01
AC	$0.47\substack{+0.27 \\ -0.00}$	$0.10\substack{+0.06\\-0.00}$	$0.06\substack{+0.03\\-0.00}$	$0.04\substack{+0.02\\-0.00}$
Surface	106 ± 8	4.84 ± 0.40	0.02	0.01
Total BG	735 ± 20	$7.36 {\pm} 0.61$	$1.62 {\pm} 0.28$	0.80 ± 0.14
$\operatorname{WIMP}_{\operatorname{best-fit}}$	3.56	1.70	1.16	0.83
Data	739	14	2	2

Edrift

- 1. The optics and response isn't uniform for S2s
 - 1. Hard to measure
 - reflectivity Teflon ex situ
- 2. There is no internal calibration
- 3. When doing ML, including what we do **know** is not straightforward

Each photosensor represents input dimension

Looking for embedding $\mathbb{R}^{128} \rightarrow \mathbb{R}^2$

Each photosensor represents input dimension

Looking for embedding $\mathbb{R}^{128} \rightarrow \mathbb{R}^{2}$

Key insight: sensors near in 2D see similar signals, so sensor dimensions correlated

Dimensionality reduction

Often have higher dimensional data that we know has a low-dimensional representation

 $3D \rightarrow 2D$: how to flatten? i.e. preserve neighbors

Twin peaks

Swiss roll "Manifold learned"

Baseline

Dimensionality reduction: Principal Component Analysis

Dimensionality reduction: Local linear embedding

Scale off.... now can use physics knowledge!!

Stretching image

Triangulation interpolation from known positions in learned and lab space

-25

25

0

50

Applications / Conclusion

- DAQ: can find flipped channels
- Can "learn" optics/response of uncalibratable detector
- Can be used for detector alignment
- Only assumption neighborhoods preserved
 - P.S. ask me about spatial statistics and Ripley K functions if you ever want to check your manifold after learning on 'uniform' distribution