

Machine Learning Techniques in the CMS Higgs to Di-muons Search

Darin Acosta, Pierluigi Bortignon, <u>Dimitri Bourilkov</u>, Andrew Brinkerhoff, Andrew Carnes, Sergei Gleyzer, Brendan Regnery University of Florida for the CMS Collaboration CHEP 2018, Sofia, Bulgaria, July 10, 2018

Physics Motivation

- Probe the Higgs couplings to the 2nd generation (couplings to the 3rd generation and to gauge bosons show SM-like features)
- □ A very difficult analysis:
 - small branching ratio of the muon decay ~ $2 \cdot 10^{-4}$
 - large irreducible backgrounds: dominated by Drell-Yan to $\mu\mu$ and di-top to $\mu\mu$ (+ di-bosons and single top)
- On the plus side: excellent mass resolution for muon pairs, narrow Higgs peak
- □ HIG-17-009 (PAS & PAPER, 35.9 fb⁻¹, 2016 data)

Production Channels

Several channels with different cross sections, topologies and backgrounds: gg fusion, VV fusion, associate VH, ttH ratios 1 : 0.078 : 0.046 : 0.010

 $V = W^{\pm} \text{ or } Z$

D.Bourilkov, Florida, CMS

ML for H \rightarrow µµ

Event Classification

- Boosted Decision Tree (BDT) in TMVA (ROOT): binary signal-background separation; BDT score [-1, 1]
- □ Signal trained on: $gg \rightarrow H$ (ggF), $VV \rightarrow H$ (VBF), associate VH
- Variables with some discriminating power for S/B used
 - The p_T and η of the dimuon system
 - The $|\delta \eta|$ and $|\delta \phi|$ between the muons
 - The η values of the two highest-p_T jets
 - The masses of the two highest-mass dijet pairs
 - The |δη| bewteen the jets in the two highest–mass pairs
 - The number of jets with $|\eta| < 2.4$ and $|\eta| > 2.4$
 - The number of jets passing the CSVv2 medium b-tag working point
 - The E^{miss}_T

D.Bourilkov, Florida, CMS

ML for H→µµ

Variable Ranking by BDT

- BDT ranks the used
 variables by importance
- The di-muon system p_T and η come on top
- Jet variables important for VV→H
- Signal sample split in 3 independent chunks: training, test, limit setting
- Background: train/test

Feature	Importance
Dimuon p _T	5.342e-02
Dimuon η	3.896e-02
$ \delta\phi(\mu\mu) $	3.500e-02
Number of medium b-tags	2.842e-02
$\eta(jet1)$	1.724e-02
E _T ^{miss}	1.706e-02
Number of forward jets	1.218e-02
$ \delta\eta(jj_1) $	8.310e-03
Number of central jets	8.036e-03
$\eta(jet2)$	7.460e-03
$ \delta\eta(\mu\mu) $	6.793e-03
$M(jj_1)$	6.546e-03
$ \delta\eta(jj_2) $	3.304e-03
$M(jj_2)$	2.199e-03

BDT Output

Transformed BDT

Transformed BDT response in quantile in data and MC: sum of all signal events in all production processes has a uniform distribution. The VBF channel has the highest BDT scores. Btagging helps to suppress the top backgrounds.

D.Bourilkov, Florida, CMS

ML for H \rightarrow µµ

Decision Tree Autocategorizer I

7

- Greedily" optimize the sensitivity (and the expected upper limit)
- Events categorized on:
 - **BDT score: from -1** \Rightarrow **background-like to +1** \Rightarrow **signal-like**
 - the maximum muon $|\eta|$: proxy for the mass resolution
 - (2.8 to 7.6 GeV FWHM for barrel/endcap categories: 0.0-0.9-1.9-2.4 in $|\eta|$)
- □ Events (S/B) in 0.5 GeV bins for [120, 130] GeV
 □ Significance of each bin i given by S/√B: add in guad

Net Significance =
$$\sum_{c,i} S_{c,i}^2 / B_{c,i}$$

■ We start with one (inclusive) category c: 1st iteration D.Bourilkov, Florida, CMS ML for H→uu

Decision Tree Autocategorizer II

- □ Fine binning ⇒ central bins contribute most ⇒ account for resolution
- □ Check all split values for $|\eta|$ and BDT score and find the values giving maximum gain for $c \rightarrow c1 + c2$

Gain =
$$\sum_{i} S_{c1,i}^2 / B_{c1,i} + \sum_{i} S_{c2,i}^2 / B_{c2,i} - \sum_{i} S_{c,i}^2 / B_{c,i}$$

- Split in 2 categories by max gain either on BDT score or [η]: 2nd iteration
- Next iterations: repeat the procedure on the newly created categories, "greedily" going for the max gains
- Stop when desired # of categories is reached

D.Bourilkov, Florida, CMS

Mass Resolution - Categories

Signal model compared to MC: weighted sum of contributions from all processes and all categories, and for one of the best - category 6 (normalized to unity)

D.Bourilkov, Florida, CMS

Final Categories I

- □ Simplification: rounding some of the cuts (~ no loss)
- □ 15 event categories
- □ Gain of 23% relative to the 7/8 TeV BDT categories

BDT response quantile [%]

D.Bourilkov, Florida, CMS

ML for H \rightarrow µµ

Final Categories II

BDT response	Maximum	ggH	VBF	WH	ZH	ffH	Signal	Bkg./GeV	FWHM	Bkg. fit	S/\sqrt{B}
quantile [%]	muon $ \eta $	[%]	[%]	[%]	[%]	[%]		@125 GeV	[GeV]	function	@FWHM
0 - 8	$ \eta < 2.4$	4.9	1.3	3.3	6.3	32	21.2	3.13×10^{3}	4.2	mBW ·B _{deg4}	0.12
8 - 39	$1.9 < \eta < 2.4$	5.6	1.7	3.9	3.5	1.3	22.3	1.34×10^3	7.2	mBW ·Bdeg4	0.16
8-39	$0.9 < \eta < 1.9$	10	2.8	6.5	6.4	5.2	41.1	2.24×10^{3}	4.1	mBW ·Bdeg4	0.29
8 - 39	$ \eta < 0.9$	3.2	0.8	1.9	2.1	3.5	12.7	$7.83 imes 10^2$	2.9	mBW Bdeg4	0.18
39 - 61	$1.9 < \eta < 2.4$	2.9	1.7	2.7	2.7	0.3	11.8	$4.37 imes10^2$	7.0	mBW ·Bdeg4	0.14
39 - 61	$0.9 < \eta < 1.9$	7.2	3.3	6.1	5.2	1.3	29.2	$9.70 imes 10^2$	4.0	mBW ·Bdeg4	0.31
39 - 61	$ \eta < 0.9$	3.6	1.1	2.6	2.2	0.9	14.5	$4.81 imes10^2$	2.8	mBW	0.26
61 - 76	$1.9 < \eta < 2.4$	1.2	1.5	1.8	1.7	0.2	5.2	1.48×10^2	7.6	mBW ·B _{deg4}	0.11
61 - 76	$0.9 < \eta < 1.9$	4.8	3.6	4.5	-4.4	0.7	20.3	5.12×10^{2}	4.2	mBW ·Bdeg4	0.29
61 - 76	$ \eta < 0.9$	3.2	1.6	2.3	2.1	0.6	13.1	3.22×10^2	3.0	mBW	0.28
76 - 91	$1.9 < \eta < 2.4$	1.2	3.1	2.2	2.1	0.2	5.8	1.04×10^{2}	7.1	mBW Bdeg4	0.14
76 - 91	$0.9 < \eta < 1.9$	4.4	8.7	6.2	6.0	1.1	20.3	3.60×10^{2}	4.2	mBW ·Bdeg4	0.35
76 - 91	$ \eta < 0.9$	3.1	4.0	3.8	3.6	0.9	13.7	2.36×10^{2}	3.2	mBW	0.34
91 – 95	$ \eta < 2.4$	1.7	6.4	2.5	2.6	0.5	8.6	96.0	4.0	mBW	0.28
95 - 100	$ \eta < 2.4$	2.0	19	1.5	-1.4	0.7	13.7	- 83.4	14	mBW	0.48
0 - 100	$ \eta < 2.4$	59	61	51	52	49	253	1.30×10^{4}	3.9		

D.Bourilkov, Florida, CMS

Outlook

□ Boosted Decision Trees help to improve the separation of signal and background for the different channels of the very challenging H→µµ search

- By creating automatic event categories, the highest sensitivity of the analysis can be achieved
- Future work: try additional variables and deep neural networks