
Use hit predictor models to score candidate hits like a 
Kalman Filter and build tracks 
• Tested on µ=10 pt>1GeV data 
• Start with 3-hit seed 
• Choose best hit at each                                  

successive layer 
• No combinatorial branching

Possible benefits 
• Regular, parallelizable computation 
• Non-linear modeling 
• Learned representations/features 
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HEP.TrkX

This model produces predictions as bi-variate 
Gaussian probability distributions. 
• Now we have predictions with uncertainty! 
• Trained with Gaussian log-likelihood loss 
Architecture: 

Loss: 

Trajectories: 

Pull distributions: 

Some non-Gaussian features, but promising results 

Replace Kalman Filter with a Recurrent Neural 
Network: 
• For a sequence of hit positions, predict the 

location of the next hit 
• Train as a simple MSE regression 
• Use to score candidate hits in tree search 

Architecture: 

Trajectories: 

Residual errors: 

Bulk of prediction errors < 1mm

The problem 
Reconstruct thousands of particles from tens of 
thousands of spacepoint “hits”. 

Traditional algorithm approach 
• Seeding: construct initial segments of tracks 

(seeds) of 2-3 hits using trajectory constraints 
• Track building: extrapolate seeds and assign 

hits using combinatorial Kalman Filter 
• Track fitting: resolve remaining ambiguities 

between candidates and fit trajectory parameters 

Limitations of traditional algorithms 
• Quadratic (or worse) scaling with occupancy 
• Hand-engineered features and methods 
• Inherently serial 
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RNN hit predictor model RNN Gaussian hit predictor model
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Deep learning applications seem promising for 
HEP particle track reconstruction 
• RNNs can function like state estimation filters for 

particle track dynamics 
• Models can learn to produce predictions with 

uncertainties 
• Graph representations allow for powerful GNN 

models for finding tracks in events 
• Most promising approach thus far

Recurrent graph neural network

LSTM FC
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Tracking detectors    
composed of 

highly granular 
silicon sensors 

arranged on 
cylindrical layers 

with endcap disks

LSTM FC

Model Hit selection 
accuracy

Simple 99.93%

Gaussian 99.98%

100M readout channels!

Building tracks with hit predictor models

Two network components operate on 
the graph locally: 

• Edge network uses the node 
features to compute edge weights 

• Node network aggregates forward 
and backward node features with 
the edge weights and computes 
new node features

InputNet EdgeNet NodeNet EdgeNet NodeNet … EdgeNet

Represent the data as 
a graph of connected 
hits constructed with 
geometric constraints 
(delta-phi, delta-z)

Use Graph Neural Networks to learn on this representation

Chain these together as a recurrent neural network

Hit classification - find the hits that belong to one 
seeded track via binary classification of the graph 
nodes

Segment classification - find all tracks 
simultaneously via binary classification of graph 
edges (hit pairs)

pT > 1 GeV 
pileup µ = 10

pT > 1 GeV 
pileup µ = 10

• 7 graph 
iterations 

• 26k model 
parameters

• 4 graph 
iterations 

• 7k model 
parameters

99% purity 
98% efficiency

99% purity 
99% efficiency

Easy scenario but important first sanity check!

https://heptrkx.github.io

https://heptrkx.github.io/

