SHiP Spectrometer Optimization using Bayesian Optimization with Gaussian Processes

23rd International Conference on Computing in High Energy and Nuclear Physics

Oleg Alenkine, Mikhail Hushchyn, Katerina Kuznetsova, Massimiliano Ferro-Luzzi, Alexander Baranov

1Skolkovo Institute of Science and Technology, 2Yandex School of Data Analysis, 3National Research University Higher School of Economics, 4SHiP

Introduction

SHiP is a new proposed fixed-target experiment at the CERN SPS accelerator. The goal of the experiment is to search for hidden particles predicted by models of Hidden Sector. The purpose of the SHiP Spectrometer Tracker is to reconstruct tracks of charged particles from the decay of neutral New Physics objects with high efficiency. Efficiency of the track reconstruction depends on the specific geometry. Parameters of the geometry can be optimized to achieve the higher efficiency. In this study the SHiP Spectrometer Tracker optimization using Bayesian optimization with Gaussian processes in considered.

SHiP Spectrometer

The SHiP Spectrometer has 2 straw tube stations before the magnet and 2 stations after it. Each station has 4 views: 2 Y-views with straw tubes along Y axis and U, V-views rotated relative to Y axis. A view has 2 planes with 2 straw tubes layers in each plane as it is shown in Fig 2. In addition to the parameters in the figure, there are z shift between views inside one station and angle between Y and Stereo (U, V) views.

Gaussian Processes Regression

Consider an objective function $y = f(x)$ that is needed to approximate using set of observations $\{(x_i, y_i)\}_{i=1}^{n}$. In the Gaussian processes assumption the sequence of the observations has a Gaussian distribution:

$$y = \{y_1, y_2, \ldots, y_n\} \sim N(\mu, K), \quad \mu = \{\mu(x_1), \mu(x_2), \ldots, \mu(x_n)\}$$

Then, for a new point (x_{n+1}, y_{n+1}),

$$y_{n+1} \sim N(\mu', K')$$

$$K' = \begin{pmatrix} K & k \times (x_{n+1}, x_{n+1})^T \\ k^T & k^T \end{pmatrix}, \quad K^{-1} = \begin{pmatrix} k^T \times (x_{n+1}, x_{n+1}) & k^T \\ k \times (x_{n+1}, x_{n+1}) & 1 \\ k^T & k' \\ k' & 1 \end{pmatrix}$$

The objective function approximation $\mu(x_{n+1})$ is defined from the conditional distributions:

$$\mu(x_{n+1}) = k^T K^{-1} y$$

$$\sigma^2(x_{n+1}) = k^T K^{-1} k$$

Bayesian Optimization

Bayesian optimization loop:

- Given observation $\{(x_i, y_i = f(x_i))\}_{i=1}^{n}$, fit a Gaussian processes regression model.
- Optimize Expected Improvement (EI) acquisition function based on the regression model for sampling the next point:

$$x_{n+1} = \arg\min_x E(I(x))$$

$$E(I(x)) = \mathbb{E}[\{0, f(x) - f(x^*)\}]$$

$$f(x) \sim N(\mu(x), \sigma(x))$$

$$x^* = \arg\min_{x \in \Omega} f(x)$$

SHiP Spectrometer Optimization

The following parameters of the SHiP Spectrometer geometry are used during the optimization:

- Straw tube diameter: 2.0 cm
- Pitch: 3.6 cm
- Z shift between layers: 1 - 12 cm
- Z shift between plates: 1 - 12 cm
- Z shift between views: 10 - 12 cm
- Y offset between layers: 1.8 - 3.6 cm
- Y offset between plates: 0.9 - 4.5 cm
- Angle α between Y and U, V views: 5 - 15 degrees

For each combination of the parameters a set of tracks and their hits in the spectrometer are generated. Then, a track pattern recognition algorithm is applied and the following objective function is calculated:

$$\mathbb{E}[\text{reconstructed tracks}] / \mathbb{E}[\text{generated counts}]$$

Bayesian optimization with Gaussian processes is used to maximize the objective function. The found optimal maximum after each iteration of the optimization is shown in Fig 4.

Conclusions

Bayesian optimization with Gaussian processes is successfully applied for the SHiP Spectrometer optimization. The found optimal geometry configuration provides better track recognition efficiency.