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Introduction e Sample the next observation (241, Ynt1 = f(Znt1))-
SHiP is a new proposed fixed-target experiment at the CERN SPS accelerator. The goal of the ex- 15 0.0010-
periment 1s to search for hidden particles predicted by models of Hidden Sectors. The purpose of . H((XX))(unknown) ’ S&S)ervations o Ele(ﬁquery boint
the SH1P Spectrometer Tracker 1s to reconstruct tracks of charged particles from the decay of neutral - 000081 \ A
New Physics objects with high efficiency. Efficiency of the track reconstruction depends on the spec- 0.54 0.0006 1 (\
trometer geometry. Parameters of the geometry can be optimized to archive the higher efficiency. In ” 00004,
this study the SHiP Spectrometer Tracker optimization using Bayesian optimization with Gaussian >0
processes 1in considered. 05 0.0002 U m
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SHiP Spectrometer Optimization

The following parameters of the SHiP Spectrometer geometry are used during the optimization:

e Straw tube diameter: 2.0 cm
e Pitch: 3.6 cm
e / shift between layers: 1 - 12 cm

Figure 1: SHiP detector layout

SHIP Spectrometer

e Z shift between planes: 1 - 12 cm

The SHiP Spectrometer has 2 straw tube stations before the magnet and 2 stations after it. Each sta- e Z shift between views: 10 - 12 cm
tion has 4 views: 2 Y-views with straw tubes along Y axis and U, V-views rotated relative to Y axis.
A view has 2 planes with 2 straw tubes layers in each plane as it is shown 1n Fig 2. In additional to
the parameters in the figure, there are z shift between views inside one station and angle between Y

e Y offset between layers: 1.8 - 3.6 cm
e Y offset between planes: 0.9 - 4.5 cm

and Stereo (U, V) views. e Angle o between Y and U, V views: 5 - 15 degrees
For each combination of the parameters a set of tracks and their hits in the spectrometer are gener-
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>tations 162 ° Vtations 364 Planet " Plane2 ated. Then, a track pattern recognition algorithm 1s applied and the following objective function 1s
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~ offset_layer Q found objective maximum after each iteration of the optimization 1s shown in Fig 4.
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Figure 2: The SHiP Spectrometer (left) and one view layout (right). 0.361
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Consider an objective function y = f(x) that is needed to approximate using set of observations
{z,y};" ;. In the Gaussian processes assumption the sequence of the observations has a Gaussian 0.281
distribution: 0.26
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Then, for a new point (2,11, Yn+1)- Iterations

y . Figure 4: Dependency of the found objective maximum from iterations of the optimization.
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Each set of the geometry parameters 1s checked for agreement with engineering constraints. The

( k(xq, zy +1>\ found optimal geometry 1s shown in Fig 5.
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The objective function approximation y(x,,+ 1) is defined from the conditional distributions:
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Bayesian Optimization
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Baseline Optimized
Bayesian optimization loop:
e (Given observation { xi, Y = f (g; z) ;?:1, fit a Gaussian processes regression model. Figure 5: Straw tubes of two views for baseline (left) and optimized (right) geometries.
e Optimize Expected Improvement (EI) acquisition function based on the regression model for sam-
ling the next point: o
PnE P o Conclusions
Tyl = argmin El(x)
El(z) = Emax{0, f(z) — f(z7 )Y, f(z)~N(ux), o(x), z~ =ag min f(z) Bayesian optimization with Gaussian processes 18 successfully applied for the SHiP Spectrometer

et optimization. The found geometry configuration provides better track recognition efficiency.



