Imperial College London

BAYESIAN OPTIMISATION OF THE SHIP MUON SHIELD

Oliver Lantwin oliver.lantwin@cern.ch

Overview of SHiP

Two signatures:

1. Via decay to visible particles in hidden sector spectrometer

2. Via scattering in nuclear emulsion

 \rightarrow Generic signatures predicted by many new physics models.

Crucial to have zero background

Further information

• Technical Proposal: [CERN-SPSC-2015-016]

Why optimise the muon shield?

- Active muon shield that has to reduce muon flux by at least 6 orders of magnitude
- kinematic range of muons up to $p \sim 350 \,\mathrm{GeV}$
- kinematic range of muons up to $p_T \sim 8 \,\mathrm{GeV}$

The muon shield is the critical component to optimise to maximise the experimental acceptance

Challenges of the optimisation

- ~50 free parameters (lengths), each varying from cm to m
 Doubly statistically limited
 - Not enough simulation
 - Not enough computing power to use entire simulation for optimisation
- Underlying physics inherently stochastic
- Nearly identical configurations may have very different performance
 With a different random seed entirely different muons pass the shield

- Addendum to the Technical Proposal
 [CERN-SPSC-2015-040]
- Physics Proposal: [CERN-SPSC-2015-017]
- New papers on facility and optimisation this year!

Convergence

 \rightarrow Evaluation of points very expensive, gradient information not available and can not be approximated

Bayesian optimisation for the SHiP muon shield

- $x_t^{+} = 0.1000$ 1.5True (unknown) • Observations $\mu_{GP}(x)$ - -1.0 — u(x) CI 0.5 f(x) 0. -0.5 -1.0-1.5 _____ -2.0 -1.5 0.5 -1.0 -0.5 0.0 1.0 1.5 2.0 Х
- Two optimisers shown here: still evaluating different regression algorithms to determine which performs best
- Performance here is on the reduced muon sample: perform follow-up studies on the full dataset to confirm performance

Results

- Significant reduction in weight $(\rightarrow cost)$
- Same performance with significantly reduced magnetic field

Configuration	length/m	weight/kt	reduced sample	full sample
baseline @1.8 T	34.60	1.72	27±5	70±15

- Bayesian optimisation does not scale well to so many dimensions
- Computing model imposes additional constraints.
- 1600 cores available at YANDEX \rightarrow Make up to 100 guesses at once (with 16 nodes parallelising every function evaluation)
- Use scikit-optimize implementation of Bayesian optimisation
- Use Gaussian processes and random forests as surrogate models
- Reduce muon sample by factor ~40 to speed up evaluation and even out coverage of phase space:
 - Currently manual data-driven method
 - Evaluating importance sampling and other options

new optimum @ 1.7 T 34.82 1.28 22±3 42±6

Future work

- Close collaboration with engineers at MISIS to progress to a detailed engineering design using grainoriented steel
- Fully automate process, add additional constraints to loss function and improve the shield further!

Prototyping

Construct five different prototypes to test technologies in test beams at CERN:

• Different joints for grain oriented steel

Assembly of magnet elements