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Introduction
Particle identification (PID) plays a crucial role in LHCb analyses. The LHCb PID system is com-
posed of two ring-imaging Cherenkov detectors (RICH), a series of muon chambers and a calorimeter
system (ECAL and HCAL). Combining information from these subdetectors allows one to distinguish
between various species of long-lived charged particles. Advanced machine learning techniques are
employed to obtain the best PID performance and control systematic uncertainties in a data-driven
way. This poster covers the major steps of the implementation, and highlights the PID performance
achieved in Run 2.

Figure 1: LHCb detector layout. The interaction point is on the left, inside the VELO detector.

Global Particle Identification
Particle identification plays a crucial role in high-energy physics analysis. Global PID at LHCb iden-
tifies the charged particle type associated with a given track. There are five particle types: electron,
muon, pion, kaon, proton, and ghost track. Ghost tracks are charged tracks that do not correspond to
a real particle which passed through the detector. Different particle types have different responses in
the LHCb systems:
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Figure 2: Illustration of different particle type responses in the LHCb systems.

PID is a multiclassification problem in machine learning. Information from the LHCb tracking
system, RICHs, calorimeters and muon chambers are used as inputs for the following classifiers to
estimate a track type: ProbNN [1] (baseline) is an one hidden layer neural network of TMVA library;
Deep NN is a deep neural network of Keras library; CatBoost [2] is a gradient boosting over oblivious
decision trees classifier.
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Figure 3: Example of deep neural network used for the particle identification.

The classifiers are trained on a MC sample containing all of the different charged particle types.
Calibration samples, containing particles that can be identified purely based on only kinematic prop-
erties, are used to estimate the classifier performance on real data. The samples contain decays that
allow particle types to be identified based only on kinematic properties. The PID performance of each
classifier is shown in Fig 4.
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Figure 4: Dependences between background rejection and signal efficiency for six particle pairs.

Flat PID Model
The PID information strongly depends on the kinematic variables. This relationship leads to strong
dependency between PID efficiency and kinematic variables as shown in Fig 5. Relative to the base-
line model, the Flat 4d model, which is a boosted decision trees classifier, has a flatter PID efficiency
as a function of particle p, pT , η and nTracks (event multiplicity) observables. The classifier achieves
this flatness using a modified loss function [3].

Figure 5: Dependence between Flat 4d model efficiencies and particle transverse momentum for each particle type. The
curves correspond to the same global signal efficiency of 60%.

Conclusions
Combining information from the LHCb tracking system, ring-imaging Cherenkov detectors, electro-
magnetic and hadron calorimeters, and muon chambers using advanced machine learning techniques
allows to achieve high quality of global charged particle identification.

Figure 6: Infinity Glove with Infinity Stones. Marvel Entertainment, LLC c©.
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