
Thoughts on using python, numpy, and scikit-learn for HEP analysis

Python and numpy are not yet ready for a full translation

What would analysis look like in another language if it wasn’t based on C++? If it wasn’t based so explicitly on ROOT?
Introduction

I wanted to base the analysis on the numpy and pandas 
python packages. Numpy is an open source Python package 
that contains an ultra efficient N-dimensional array along with 
mathematical functions to operate on columns and rows of 
the array. Numpy is implemented in CPython, which is 
compiled code. Pandas makes dealing with numpy easier by 
giving you short cuts for operations.

But our data is not well suited for numpy, which is fastest and 
most at home with an csv-like data format: square arrays or 
tables.

I’ve taken some basic plotting tasks and examined what they 
look like in various environments. All code can be found on 
github: https://github.com/gordonwatts/analysis-plot-
comparison
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Event E1 pT E2 pT E3 pT M1 pT M2 pT M3 pT M ET

1 56.2 25.4 0.0 133.0 78.0 0.0 74.0

2 150.0 0.0 0.0 190.3 110.5 25.0 310.0

Our data does not fit well in a rectangles!
Pad with zeros?
Drop “extra” jets?
Give each event a max number of jets?

Analysis Tasks
The following tasks were setup to look at the performance and user 
interface for doing late-stage ntuple analysis.

A simple ntuple file with single-value leaves and leaves that contain 
vector<double>’s. It looks a lot like an end-stage flat ntuple that 
many analyses use. It contains no complex objects (not even a 
TLoretnzObject). The total file size is 11 GB, and it has 148 branches 
and 1.9 million events. The tasks:
1. Plot the missing 𝐻𝑇, which is a single-value leaf
2. Plot jet 𝑝𝑇. This is a leaf of vector<double>, so requires iterating 

over both events and the array.
3. Plot jet 𝑝𝑇 with 𝜂 < 1.0. This requires matching jet 𝑝𝑇 to jet 𝜂.
4. Plot missing 𝐻𝑇 for events that have two good jets. This requires 

iterating over jets, and making a cut at the event level.

ROOT’s RDataFrame

Setup & Configuration
This requires the download and install of ROOT. This is a simple 
click and go.

Plotting Missing 𝐻𝑇
This requires two lines:

Note that branch names are specified as text strings.

Plotting Jet 𝑝𝑇
Plotting Jet 𝑝𝑇 is identical. No need to specify a second loop, 
the RDataFrame sub-system figures out the implied loop 
automatically.

Plotting Jet 𝑝𝑇 for 𝜂 < 1
RDataFrame encourages you to think of the JetPt and JetEta 
TTree leaves as just giant long arrays:

Note that we define new columns goodjet and goodjet_pt and 
apply them using the [] notation to filter the CalibJet’s. From 
that we define a new column that are the filtered jets and we 
can manipulate them. The filter is untyped.

Plot Missing 𝐻𝑇 for Events that have Two Good Jets
The code is more complex now as we must relate between 
events and sub-lists of jets:

• Implicit looping over jets
• Implicit counting over per jet, despite syntax being the same
• C++ code as text, compiled by the clang back-end. Not 

typed.

ROOT::RDataFrame df("recoTree", “<filename>.root");

auto met = df.Histo1D("event_HTMiss");

auto f = new TFile("../01-dataframe.root", "RECREATE");

met->Write();

ROOT::RDataFrame df("recoTree", “<filename>.root");

auto df_good = df.Define("goodjet",
"abs(CalibJet_eta) < 1.0")

.Define("goodjet_pt",      
"CalibJet_pT[goodjet]");

auto jetpt = df_good.Histo1D("goodjet_pt");

jetpt->Write();

ROOT::RDataFrame df("recoTree", “<filename>.root");

auto df_good = df.Define("goodjet",
"abs(CalibJet_eta) < 1.0 && CalibJet_pT > 40.0")

.Define("goodjet_pt", "CalibJet_pT[goodjet]")

.Filter("goodjet_pt.size() >= 2");

auto met = df_good.Histo1D("event_HTMiss");

met->Write();

Python with numpy

Setup & Configuration
This requires download and install of Anaconda 3 and pip 
install of uproot. The uproot package is used to read TTree’s 
without having to link against ROOT. Matplotlib is used to 
make plots.

Plotting Missing 𝐻𝑇
This requires two lines:

reco_tree = uproot.open(“<filename>.root”)["recoTree"]
met = reco_tree.array('event_HTMiss’)
plt.hist(met, bins=100)
plt.show()

The array method reads in the complete event_HTMiss
branch as a single numpy array.

Plotting Jet 𝑝𝑇
Plotting Jet 𝑝𝑇 is identical. However, what goes on behind the 
scenes is a little different. Instead of an array, the 
reco_tree_array(‘CalibJet_pT’) call returns a jagged array. 
This is an array of arrays. For every event there is a list of jets 
𝑝𝑇’s:

A jagged array is actually a numpy 1 dimensional array, along 
with a second array that indexes the start for each event.

Plotting Jet 𝑝𝑇 for 𝜂 < 1
Jet 𝜂 and 𝑝𝑇 are treated as two long, matched, arrays:

reco_tree = uproot.open(“<filename>.root”)["recoTree"]
jetinfo = reco_tree.arrays(['CalibJet_pT', 
'CalibJet_eta'])
eta = jetinfo[b'CalibJet_eta']
jetpt = jetinfo[b'CalibJet_pT']
goodeta = np.abs(eta.content) < 1.0
plt.hist(jetpt.content[goodeta], bins=100)

The standard trick of creating a mask in numpy here is used 
to get a list of the jets that satisfy the criteria. Note the use of 
the “.content”  property – this accesses the numpy array that 
backs the jagged array.

Plot Missing 𝐻𝑇 for Events that have Two Good Jets
The code is more complex now as we must relate between 
events and sub-lists of jets:

reco_tree = uproot.open(“<filename>.root”)["recoTree"]
jetinfo = reco_tree.arrays(['event_HTMiss', 
'CalibJet_pT’, 

'CalibJet_eta’])
eta = jetinfo[b'CalibJet_eta']
good_eta = np.abs(eta.content) < 2.0
pt = jetinfo[b'CalibJet_pT']
good_pt = pt.content > 40.0
good_jet = uproot.interp.jagged.JaggedArray(good_eta & 
good_pt, eta.starts, eta.stops)
good_event = [sum(l) > 2.0 for l in good_jet]
mht = jetinfo[b'event_HTMiss']
plt.hist(mht[good_event], bins=100)

Here the problem with the current state of python and 
jagged arrays is apparent. In particular, the good_jet mask 
must be converted it back into a jagged array. And the 
calculation of good_event occurs in python, not in numpy, 
and thus is quite slow (almost 50 seconds). The code is also 
hard to read.

LINQ

Setup & Configuration
This uses the author’s library to turn functional C# 
code into C++ that is compiled and runs against a 
ROOT file. A special command must be run against 
the ROOT file in order to generate the types from the 
leaves (note root leaves appear as C# structure 
references).

Plotting Missing 𝐻𝑇
This requires two lines:

var tree = CreateQueriable(“<filename>.root”);

using (var f = new FutureTFile(new 
FileInfo("../../../../01.root")))

{
tree

.Select(e => e.event_HTMiss)

.Plot("met", "MET; Missing H_{T} [GeV]",
100, 0.0, 500.0)

.Save(f);
}

The loop over events is implied. The Select 
statement isn’t really needed – that could have been 
specified in the Plot function. It is here for clarity.

Plotting Jet 𝑝𝑇
Plotting Jet 𝑝𝑇 is different: the sub-array reference is 
explicit (this is different in other methods):

tree
.SelectMany(e => e.jets)
.Select(j => j.CalibJet_pT)
.Plot("pt", "pt; pt [GeV]", 100, 0.0, 500.0)
.Save(f);

The SelectMany takes an array and converts it to a 
sequence.

Plotting Jet 𝑝𝑇 for 𝜂 < 1
Selection with jet 𝜂 becomes straight forward once 
the sub-array sequence above is understood:

tree
.SelectMany(e => e.jets)
.Where(j => Math.Abs(j.CalibJet_eta) < 1.0)
.Select(j => j.CalibJet_pT)
.Plot("pt", "pt; pt [GeV]", 100, 0.0, 500.0)
.Save(f);

Note the filter statement is a lambda. C# allows 
lambdas to be passed as AST, and the ROOTToLINQ
library converts the AST into C++ code.

Plot Missing 𝐻𝑇 for Events that have Two Good 
Jets
For a cut the sub-sequence reference is contained in 
a single line:

tree
.Where(e =>  e.jets.Where(j => 

Math.Abs(j.CalibJet_eta) < 1.0 
&& j.CalibJet_pT > 40.0).Count() >= 2)

.Select(e => e.event_HTMiss)

.Plot("met", "MET; Missing H_{T} [GeV]",
100, 0.0, 500.0)

.Save(f);

The filter statement contains a complete sub-query 
applied for each jet, with the count operator finally 
to sum up the number of jets that satisfy the criteria.
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Conclusion
Speedwise they are similar. The RDataFrame won overall, LINQ 
was slowed down by compile time, python came in last by a 
long shot on the missing 𝐻𝑇 with 2 good jets query due to the 
non-numpy loop.

For readability, which is subjective, the LINQ code came in first, 
with RDataFrame next, and python last. A TTreeReader test 
was also done (not shown here) and it comes in between LINQ 
and RDataFrame.

What can we do better as we head into the HL-LHC?


