

Deployment of a Matrix Element Method code for the *ttH* channel analysis on GPU's platform

G. Grasseau¹, F. Beaudette¹, A. Zabi¹, C. Martin Perez¹, A.Chiron¹, T. Strebler², G. Hautreux³

CHEP 2018 Conference, 9-13 July, Sofia, Bulgaria

¹ Leprince-Ringuet Laboratory (LLR), Ecole Polytechnique, Palaiseau

² Imperial College, London

³ GENCI, Grand Equipement National pour le Calcul Intensif, Paris

Recent discovery of H boson in ttH channel

• We (CMS@LLR) contributed to the $t\bar{t}H \rightarrow \tau\tau$ sub-channel

- Higgs decays into $\gamma\gamma$, ZZ, WW and $\tau\tau$ final states have been observed (discovery 2012) and there is evidence for the direct decay to the bb final state
- In the Standard Model, the Higgs boson couples to fermions with a strength proportional to the fermion mass (Yukawa coupling)
- The decay to the $t\bar{t}$ final state is not kinematically possible
- Probing the coupling of the Higgs boson to the *t* quark, the *heaviest* known fermion, is a high priority
- The Higgs boson in association with $t\bar{t}$ final state can result from the fusion of a $t\bar{t}$ pair or through a radiation of t quark

• First observation* of the simultaneous production of a Higgs boson with a $t\bar{t}$ pair (channel) April 2018

*A. M. Sirunyan et al. (CMS Collaboration), "Observation of tt H Production", Phys. Rev. Lett. 120, 231801 (2018)

Matrix Element Method (MEM)

MEM is an unsupervised method (theorydriven) which is important to have among the supervised ones (Machine Learning, ...)

Matrix

Element

- select a Signal final state S_{sig}: bb, $q\bar{q}$, τ_{had} , 2 leptons same sign
- compute a weight quantifying the probability that an observed event matches a theoretical model
- vary the theoretical model (Signal, background(s))
- deduce a likelihood ratio

Transfer Function

Response of the detector

MEM: time-consuming computations

Multiple scenarios to consider (compute one integral for each) : the signal process and the arrows) background processes g 000000 000000 \mathbf{H} 000000 g 000000 000000 Only one quark not reconstructed One background: one non-(blue) \rightarrow loop on all "light-jets" prompt lepton produced in a Irreducible background b decay (1+3) * 4 [* #Ligth-jets] Integrals with a dimension from 3 to 7.

They are computed if they are kinematically possible

• For each scenario : 4 permutations (green

The MEM Code

- The processing time for a typical data set (2395 evts) 55 days (14 hours / 96 cores)
 - MEM code features: MPI/OpenCL/Cuda to aggregate numerous computing resources (HPC)
 - Main kernel (one Vegas iteration)
 - developed a MadGraph extension to generate the OCL/Cuda kernel codes
 - LHAPDF lib.: Fortran to C-kernel translation
 - ROOT tools: Lorentz/geometric arithmetic's
 - \rightarrow big kernels (10-20 x 10³ lines)
 - OpenCL / Cuda bridge (IBM+NVidia)

MEM code performance

- MPI C++ version versus MPI / OpenCL / CUDA - compilation -O 3, nvcc
- 1 node @CC-IN2P3:
 - Intel Xeon 2 x E5-2640, 2 x 8 cores@2.6 GHz
 - 2 NVidia K80 cards -> 4 Kepler GPUs per node
- Good scalability (MPI & kernels asynchronous mechanisms ok)

- Computing time of a data set with 2395 evts :
 - 55 days on 1 core (or 3. 5 days on a node)
 - 450 sec. on 32 GPUs (8 nodes)

• CPU \rightarrow GPU, the use of GPUs

Conclusion / perspective

• The MEM has proven to be an efficient method for signal extraction and our (CMS@LLR) results were combined to achieve the *ttH* production mode observation in 2018 Phys. Rev. Lett. 120, 231801 (2018)

2 lepton same sign and 1 tau channel

- Gain
 - Restitution time: several days against ~10 mn
 - Computing efficiency (cost, power supply, cooling, ...)
 1 K80-GPUs is equivalent for C++ MEM case to ~20 nodes (2x8 cores)
 - In HL-LCG computing challenge, save the computing resources for other jobs.
- Physic program
 - For 2017 and 2018 data, new computations only with GPUs for *ttH(ττ)* analysis
- New developments
 - if we get the funding, project to have one code for CPU and GPUs, with the principles used by the MadGraph code generator
 - Optimizations: improve the computing load on GPUs

Acknowledgments

• Funding project P2IO Accelerated Computing for Physics

• Tiers 1 CC-IN2P3 benchmark platform

• Computing Center GENCI/IDRIS

CHEP 2018 Conference, 9-13 July, Sofia, Bulgaria

• IN2P3 project: DECALOG/Reprises

• Google Summer of Code 2018 HAhRD project : DL & HGCAL

