ct Muon Solenoid

= — —
3 = - el u- -
- = i T —

CMS Monte Carlo Generators:
Run Il experience and needs for Run Il

Luca Perrozzi (ETH Zurich)
for the CMS collaboration

CHEP conference
Sofia, July 9th 2018

m Ziirich

Introduction

 CMS at LHC relies on detailed and large scale Monte Carlo production for modeling of
the detector and underlying physics

* We are hitting several bottlenecks in term of cpu and disk space: robust software and
computing infrastructure more and more essential to reach the physics goals

* Typical Monte Carlo workflow has a few distinct steps

— Hard process/Matrix Element generation: Generate kinematic configuration for a desired process
up to parton level using perturbative QCD

— Parton Shower/Hadronization: Adds additional QCD and QED emissions down to a low scale, and
produces hadrons from QCD partons

— Detector Simulation") and Digitization: Detailed Geant4 simulation of the interactions of the
outgoing particles with the CMS detector, followed by simulation of detector electronics and
creation of simulated raw data

— Reconstruction: Reconstruction of simulated raw data into higher level physics objects
* To a good approximation, identical code as runs on real data

* Strong motivation for NLO and/or multi-leg/merged-multiplicity Monte Carlo
generators whenever possible : :

— Achieve highest accuracy for final states
with additional jets

— Warning: large time/event required

— Warning: NLO features negative weights,
requiring up to x10 statistics wrt LO b dagran22 | 06D, GED-0

diagram 149 QCD=6, QED=0
real diagram 162 QCD=5, QED=0

tt+2-jet born tt42-jet real tt+2-jet virtual

(cfr Talk “Current and Future Performance of the CMS Simulation” by K. Pedro

https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard

CMS Software Overview

 Main CMS software application: CMSSW

— Modular C++ application which can be used for event generation, detector
simulation, reconstruction, and analysis

* Configuration of CMSSW runs steered with python files

* Input and output through ROOT-based Event Data Model (EDM) files

— Storing run-level, lumi-section-level (23s periods for real data), or event-
level data products

e CMSSW links directly to many externals

— Externally maintained C, C++, fortran, or python software which is either
an indirect dependency or is directly called from within CMSSW

— Externals are compiled with the same common libraries, compiler version
as CMSSW and packaged together with a given release

— Starting from either a tarball from the author’s website, from GENSER, or
from a cms-managed github mirror

* Rapidly evolving software
— Swift change of compilers, OS versions, multi-thread support ...
— Difficult for the ‘externals’ to keep up

http://ep-dep-sft.web.cern.ch/project/generator-service-project-genser

CMS Submission Infrastructure Overview

e Large-scale submission of CMSSW jobs to grid
resources managed with python-based tools
— For central production of Monte Carlo, data processing, etc

* Jobs are assumed to run through CMSSW '\ ! ! /‘

— Configured by the corresponding python-based file

Monte Carlo Management

* Allinputs and outputs are assumed to be EDM
files (with a few special cases)

« CMSSW software and corresponding externals are
made available on worker nodes through CVMFS
— Distributes http-based read-only filesystem

Job Broker

* CMS software evolution and multi-threading pose
severe challenges to old/legacy MC software

— CMS has to produce MC events compatible to each
collected dataset, even after many years the data was taken

— Often ad-hoc “features” needed, difficult to mantain

(")cfr CHEP 2016 talk “Software and Experience with Managing Workflows for the Computing Operation of the CMS Experiment” by J.-R. Vlimant

https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/
https://indico.cern.ch/event/505613/contributions/2230726/

MC production workflows in CMS

pLHE

Basic paradigm for event generation

— C++ module making calls to linked
external generator code to produce, for
each event, HepMC::GenEvent to be
stored as EDM

Matrix element generators produce
LHE files (Madgraph, POWHEG, ...)
— Loosely coupled to CMSSW, calling of

external generation script handled by
CMSSW module “externalLHEProducer”

— ASCII LHE files are transient and
immediately packed into binary
compressed format

Parton shower programs finalize the
full event properties (Pythia, Herwig,
Sherpa)

— Fully integrated as “externals” and

packaged or linked directly from
CMSSW interfaces

Pythia or Sherpa only wmLHE

Add fragments to
genproductions

Get gridpacks from
requesters

Copy gridpacks to EOS to
be copied to cvmfs

Create GEN-SIM requests | | Create wmLHE requests in

Add cards and fragments to genproductions

Get LHE files from
requesters

Compress and copy LHE
files to EOS

Create pLHE requests in

in McM McM McM
Validate
Ask for GEN-SIM to be Report at MC coordination
created and chained meeting
pLHE runs

GEN-SIM created
automatically

Modify GEN-SIM

Test Test chain
Validate Validate chain
Report at MC coordination meeting

wmLHE runs

GEN-SIM runs

DIGI-RECO created automatically

DIGI-RECO runs

Test

Validate

Gridpacks

* Matrix element generators typically have two discrete steps:

Matrix element/code generation and phase space integration
Generation of events

 Compiled code and results of the phase space generation stored into gridpacks

For efficient generation of events on the grid
Largely self-contained tarballs prepared in advance and stored on CVMFS

Modeled on the built-in generator functionalities or through dedicated scripts
Maintaince of scripts for all the major generators (MG5 aMC, POWHEG, Sherpa, etc) can be quite heavy

Gridpack production is the default and most widely supported mechanism in CMS for Run 2

* Gridpack preparation done exploiting batch-job parallelism (LSF or Condor)

Compiling code on batch workers and long init time for event generation discouraged
Gridpack size can be an issue (>500MB for the tarball and 5GB decompressed)

Gridpack generation step needs reliability and reasonable run-time “as the physicist waits”
Recent and important developments through HTCondor Global Pool infrastructure(”

* @Grid jobs using gridpacks from CVMFS can generate events with trivial process-
level parallelization

(*)cfr Poster “Producing Madgraph5 aMC@NLO gridpacks and using TensorFlow GPU resources in the CMS HTCondor Global Pool” by K.H. Anampa

https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard

Evolution of generators and tunes

* Major changes in generator releases, PDF versions and generator tunes for 2017 data
— New tunes (GEN-17-001, in preparation) and PDF (NNPDF3.1) derived to include 13 TeV data

Previous major update in 2014, based on 7 TeV data

— Better Underlying event and jet multiplicity description

e Such updates require careful planning and coordinated effort lasting several months
— Careful validation of generators and production setups
— Large scale production of O(10K) gridpacks

* Next major goal: coherent MC production with same settings for the full Run 2

Mean charged-particle multiplicity density, trans-min region CMS Preliminary 19.7 fb™" (8 TeV)
g - CMS PAS TOP-16-0
$ S S MS PAS TOP-16-021
E -~ L ————]
0 Db. |
< o) .
2 q071 | —* CMSDau %
\E E—*— Powheg va PAMaTy
— L —%— MGs5aMC@NLO [MLM] PBMaT4
[—+— aMC@NLO PSMzaTy
B MG5_aMC@NLO [FxFx] PBM2T
10 2 |— — @ — FPowheg va P8M:1
F —o= MGs5.aMC@NLO [MLM] P8M1
L =< — aMC@NLO P8M1
B r\-m‘.g;ﬂmc@xi[O [FxFx] P8M1
el 1 | L Il Il 1 L L Il Il ‘ 1 L Il Il | 1 1 L Il ‘ 1 1
e
I - E-—_a—_C]
n -+ . e
e ‘m“ 1.2 — i i e e
m] = E i P === e e
E:I [———— ! | F 1 — T
- 8 = | [=] e I] —a—
= f { Z o8 — | ‘
0.6 | = 06 - P
............................ S T T T e
5 10 15 20 25 30 _
2 3 4 5 6

lead [
p'e9[GeV] Njets pr = 30GeV

LHC Run2 experience in a nutshell

 Computing resources planned ~1.5-2y in advance
— Current CMS MC budget is O(10-15B) events per year, O(10K) different requests
— Competing resources with data taking, re-processing, upgrade and validation samples
— Budgets do NOT scale linearly with LHC performance and effective integrated luminosity...

e Start to plan each MC production campaigns O(6) months in advance

— Generator configurations and tunes, software version, reco conditions and corrections,
production workflows need to be fully validated under time pressure

 Moving more and more from fully inclusive datasets to fully exclusive datasets
— We'll have to make this work with more efficient slicing and weighting
— Switching from search to precision: higher precision (NLO) requires higher resources...

J jul o 8 7:29:47 AMExpected e 25.4G Done events in DAS: 20.0G [Time: Sat jul 87:31 Expected e
events

MC for 2016 data MC for 2017 data

More than 20B events produced Close to 6B events produced so far,
E— “as much in the queue

']

Luminosity [cm™s

Towards Run3 and beyond: it will only get worse

e Peak luminosity —Integrated luminosity
8.0E+34 4000
Runl Run2 Run3 ¢ o @ e o @ * e o o
7.0E+34 /- 3500
NOW
6.0E+34 i 3000
5.0F+34 . 5 2500
1 | N (Y) —~p)
4.0E+34 ¥ s L) /) s 2000
— el | — —I|W)
3.0E+34 - e - 1500
2.0E+34 s " @ 4 1000
N y
>
1.0E+34 . - 500
o ~ - = T
0,0E+00 -rer—————i—t=— — e . - 0

1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 20 31 32 33 34 35 36 37 38

Year

Integrated luminosity [fb]

MC priorities and budgets from now to Run3

 MC planning driven by physics priorities

* Physics priorities driven by machine conditions

— No major center of mass energy jumps
13 to 14 TeV will not be a dramatic increase as from 8 to 13 TeV

— Once “bulk of the distributions” explored, focus on “tails” of phase space

* Notable exceptions are ultimate precision SM measurements
— e.g. Weak mixing angle, top mass, W mass

* Need to “fight” against conflicting requirements:
— (Much) larger datasets
— Increased measurement precision

— Need for alternative samples to estimate systematics uncertainties
* Different generators or parameters

— Flattening of computing resources (both cpu and disk space)

* Need to find an evolution “model” that scales already for end of Run2
— Run2is collecting >5 times data wrt Runl
— Favor cpu (i.e. don’t store LHE, “cheap” to reproduce) wrt disk occupancy
— Store slimmed dataformats like MINIAOD and NANOAOD®)

()cfr Talk “A further reduction in CMS event data for analysis: the NANOAOD format” by A. Rizzi

https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard
https://indico.cern.ch/event/587955/timetable/?view=standard

Generator technical developments: desiderata

e A vast program of MC software improvement must be pursued in the next 5 years
— This can’t be left on the shoulders of theorists and MC builders, and must be tackled community-wide
— A community white paper has been issued to illustrate possible avenues!®)

 Examples of needed technical improvements:
— Faster phase space integration
— Drastic reduction of fraction of events with negative weights for NLO precision
* E.g. folding of the integration phase space implemented in POWHEG
— Drastic increase of the matching efficiency (currently ~30%)
— Continue pursuing reduction of memory consumption to match higher jets and parallelization
* Currently up to 4j at LO, up to 2j at NLO (expected more with low memomy multicore option)
— Complete integration of process independent NLO QCD x EWK corrections
* Up to high multiplicity final states , for both virtual and real contributions
* Properly interfaced to parton shower
— Bias weights for both LO and NLO
* Produce inclusive samples with enriched statistics for specific phase spaces
— Large flexibility for LHE level cuts for both LO and NLO
* HT, VpT, number of additional jets, VBF-like, etc
— Massive use of events weights for systematic uncertainties
* Routinely used in Matrix Elements for PDF and perturbative QCD scales
* Recent Pythia8 versions support weights for parton shower systematics

— Single-gridpack parameter scan
* Especially for BSM scans, so far very high number of gridpacks required

()cfr Talk “The HEP Software Foundation Community White Paper” by M. Jouvin

https://indico.cern.ch/event/587955/contributions/3012294/attachments/1681524/2708636/CHEP18_-_CWP_Lessons_and_Future_Work.pdf
https://indico.cern.ch/event/587955/contributions/3012294/attachments/1681524/2708636/CHEP18_-_CWP_Lessons_and_Future_Work.pdf
https://indico.cern.ch/event/587955/contributions/3012294/attachments/1681524/2708636/CHEP18_-_CWP_Lessons_and_Future_Work.pdf
https://indico.cern.ch/event/587955/contributions/3012294/attachments/1681524/2708636/CHEP18_-_CWP_Lessons_and_Future_Work.pdf
https://indico.cern.ch/event/587955/contributions/3012294/attachments/1681524/2708636/CHEP18_-_CWP_Lessons_and_Future_Work.pdf
https://indico.cern.ch/event/587955/contributions/3012294/attachments/1681524/2708636/CHEP18_-_CWP_Lessons_and_Future_Work.pdf

. 12
Conclusions

 Monte Carlo Generators are an essential aspect of the
Physics program of every experiment

— LHC is not an exception

* Robust software and computing infrastructure essential
to satisfy physics needs and goals

— Several challenges posed by the large amount of data
collected and long timescale required for the MC to be
available/reproducible

e Need to find evolution “models” that scale for the future

* Experiments need to work in close contact with MC
authors to improve program performance, precision and
flexibility

— Community white paper issued recently

Backup slides

Multi-leg generators and gridpacks

Several Monte Carlo generators have the capability to
automatically generate matrix elements at LO for several
jet multiplicities

Results can be consistently combined across multiplicities
when treated consistently in parton shower

Most widely used configuration in CMS Run 2: Madgraph
aMC@NLO (LO) + Pythia 8 with MLM matching

Most complex processes with up to 4 additional jets

CPU time up to about 10s per matrix element event
(averaged over jet multiplicities), with O(10%) matching
efficiency at the parton shower step - 100s cpu for matrix
element per fully-simulated event

NLO Multi-leg generators

A few Monte Carlo generators now have the capability to (semi)-automatically
generate matrix elements at NLO in QCD for several jet multiplicites and
consistently merge them

Most widely used configuration in CMS Run2: Madgraph aMC@NLO (NLO) +
Pythia 8 with FXFX merging

At NLO in QCD, each multiplicity consists of born, real, and virtual
contributions to the matrix element

Most complex processes with up to two additional jets at NLO

CPU time scaling up to to ~ 30 s per ME event with matching efficiencies of ~
30% - 90 s of cpu time for matrix element per fully-simulated event

Events are also accompanied by a possibly large fraction of negative weights
(up to 40%) which reduces statistical precision and necessitates larger samples

Diagram/code generation also very CPU and memory intensive - recent
contribution to 2.4.x series to significantly improve (thread-level)
parallelization and memory footprint of this step, eventually enabling more
complex processes

Example CMSSW GEN Configuration Fragment

import FWCore.ParameterSet.Config as cms

from Configuration.Generator.Pythia8CommonSettings_cfi import =*
from Configuration.Generator.Pythia8CUEP8M1Settings_cfi import #*

generator = cms.EDFilter ("Pythia8GeneratorFilter",
maxEventsToPrint = cms.untracked.int32(1),
pythiaPylistVerbosity = cms.untracked.int32(1),
filterEfficiency = cms.untracked.double(1.0),
pythiaHepMCVerbosity = cms.untracked.bool(False),
comEnergy = cms.double(13000.0),

crossSection = cms.untracked.double(1.92043e+07),

PythiaParameters = cms.PSet(
pythia8CommonSettingsBlock,
pythia8CUEP8M1SettingsBlock,
processParameters = cms.vstring(

*HardQCD:all = on?,

'PhaseSpace:pTHatMin = 50 7,
'PhaseSpace:pTHatMax = 80 7,
),
parameterSets = cms.vstring(’pythia8CommonSettings’,

'pythia8CUEPEM1Settings’,
'processParameters’,

)

CMS Software: LHE Input

CMS maintains its own LHE parser (based on xerces-c xml library)

An LHE file can be read as input to a CMSSW job and is converted on the fly to C++
classes LHERunInfoProduct and LHEEventInfoProduct which store the relevant
information and can be stored/read from EDM files (support for per-event weights
added to CMS lhe parser and classes)

LHE information can be passed as input to a hadronizer as part of the event generation
step in CMSSW (using for example the Pythia8::LHAup mechanism to pass the needed
information on the fly in memory)

LHE parsers included with Pythia, Herwig etc are not used
— Advantage: Uniform hadronizer-independent storage and access to lhe information
— Disadvantage: We have to maintain our own LHE parser

CMS production tools do not work transparently with ascii LHE input (metadata not
automatically available in data management system, skipping of events is inefficient,
etc)

It is possible to use privately produced LHE files for central production (user copies the
files to eos and then a conversion step is run to produce EDM files containing the LHE
products, which can then be used for further production steps for hadronization,
simulation, etc)

Disk space, file corruption, etc, are major issues when dealing with large sets of LHE
files in this way

18
Parameter Scans

* Recently added some functionality in CMISSW for
parameter scans (used so far for SUSY signal MC)

e SUSY signal production with MG5 aMC@NLO + Pythia 8
(LO MLM)

* Typical case: gluino/squark pair production (+0,1,2 jets LO)
in MG5 aMC@NLO, decay in Pythia, steered by SLHA table
* Gridpack and pythia configuration+SLHA table for decays

are randomly selected for each luminosity section (~ 200
events after matching)

* Resulting sample contains a mixture of all scan points

* High granularity of randomization ensures missing events
from job failures are randomly and ~ evenly distributed
across scan points

