ALICE Track visualisation options for LHC Run 3

Julian Myrcha, Piotr Nowakowski, Przemysław Rokita for the ALICE Collaboration
Agenda

• Run 3 demands
• Time in visualisation
• Progressive visualisations
• Do we really need to visualise tracks
• Improvements in track visualisations
• Results
Visualisation

• Current – drawing tracks
• Pros
 • Looks nice
 • Easy to imagine for non-professionals
• Cons
 • Difficult to see details if there are many tracks
ALICE run 3
ALICE Run 3

- real time filters
- time dimension
- Hierarchical navigation
- Possibility to debug algorithms and detectors
Visualisation – dynamics

• We see a cumulative snapshot of the event
• It is interesting to observe how the system evolve in the time
 • Adding track filtering
 • Adding the animation – the incremental drawing
 • Drawing consecutive frames on the same image, but moved by (time frames)
Incremental drawing
Incremental drawing

- Current visualization shows whole tracks
- Track animation may improve visual attractiveness for visitors
Incremental drawing

- Current visualization shows whole tracks
- Track animation may improve visual attractiveness for visitors
- Below the same track displayed for six points in time
Incremental drawing

• Tracks parts appear and disappear
Visualisation – Time frames

- We can show visualisation evolving by drawing several snapshots on the same visualisation
- May be the same or different events
- This technique valid for tracks and for non-tracks visualisation

https://alice-o2.web.cern.ch/node/171
Visualisation – without a tracks

- We can abandon drawing tracks altogether
- Straightforward – live (cumulative?) statistics
- Combined – draw non-tracks information spatially (energy, particle types)
- Drawing volumes instead of the tracks
- Change in paradigm will be welcome – but to be found
- Example from the past were calorimeter towers
Improvements on track drawing
Track visualisation

- Improvements in track drawing still important
- Event registered 25-11-2015 (Pb-Pb)
- 6364 particles
- Window size: 1280x720px
- Measured frame rate in 10 seconds, averaged on 10 measures
Algorithms – OpenGL + Vulcan

• Two technologies were compared
 • OpenGL (A 25 year old, but evolving standard, Linux, Windows, IOS)
 • Vulkan (A new Graphics API for Linux/Windows giving a much more control over the visualisation hardware)

• Four versions of drawing tracks
 • Version A (independent paths)
 • Version B (single buffer)
 • Version C (single command)
 • Version D (indirect drawing)
Support from the card vendors

<table>
<thead>
<tr>
<th>Graphic Card</th>
<th>OpenGL 4</th>
<th>Vulkan</th>
<th>Metal</th>
</tr>
</thead>
</table>

* For Linux here are open-source driver supporting *Ivy Bridge* (2012)
** Apple warns that it will discontinue support for OpenGL, but will support OpenGL ES for some time
Track drawing performance results

![Graph showing performance comparison between different algorithms and graphics cards]

- OpenGL 660M
- OpenGL 780Ti
- Vulkan S 660M
- Vulkan S 780Ti
- Vulkan D 660M
- Vulkan D 780Ti
Summary

- Adding information about changes in time is a new factor worth to be considered
- Not only tracks may be visualized, time for new ideas
- There are many ways how tracks may be drawn
- Vulkan is no superior over properly written OpenGL
- Apple threatened dropping support for OpenGL, so maybe we should also drop support (for desktop graphics or for Apple)