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Tuning
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Goal: best possible physics prediction of MC generator

Realistic events contain physics at low scales where perturbation
breaks down

Rely on model assumptions that introduce many parameters
Need to find “meaningful” settings

Can be done manually but hard to do on a reasonable time-scale
because of MC run-time and dimensionality of problem

Charged particle 7 at 7 TeV, track p, > 100MeV, for Ny, > 2

—— Tuned
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Tuning with Professor in a nutshell

» Random sampling: N parameter points in n-dimensional space
» Run generator and fill histograms (e.g. Rivet) trivial parallel

» Polynomial approximation per bin

» Construct goodness-of-fit measure
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In the following this will be called the “inner optimisation” problem



Inner and outer optimisation
» Incompatible datasets and mismodelling in MC generator
necessitate introduction of tuning weights wj
» Adjusting the weights has so far been a manual procedure

» The user would iteratively run the “inner optimisation” and look
at resulting plots

» We propose an automated procedure for this “outer optimisation”:

Write goodness-of-fit in terms of histograms/observables
The parameter space is now the observable-weight space
Inner optimisation yields best fit point, p, for given

{wo}

e pisused to evaluate an objective function for the outer optimisation
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Portfolio objective
» For given p, we can calculate the per-observable goodness-of fit
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» With N such measures, we can calculate mean and standard
deviation
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» And construct an objective function to minimise
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Outer optimisation

» Minimisation of portfolio objective is iterative

» We train a radial basis function and use it to walk through the

weight space

» Convergence is fast but depends on initial guess — multi-start
approach (that’s ok since inner optimisation is really fast)
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Evolution of weights

» This plot shows the {wy} of the outer optimisation
» Controlplot to check that weight space is reasonably sampled
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Evolution of inner optimisation

» This plot shows the p of the inner optimisation
» Shows the correlation of parameters
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Comparison of results
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Rational approximation

» Polynomial approximation does not capture 1/x behaviour well
» E.g. masses in propagators

» — Multivariate rational approximation f () = g(p)/h(p)

» With g, i being polynomials of order m, n

J
e Input
X Prediction, m=5, n=0

e Input
X Prediction, m=0, n=1




Spurious poles

vV v . vvY

Code works in principle but: spurious poles

For numerical reasons, denominator polynomial can have roots

Happens if “wrong” m, n are chosen.

In 1D to easy find roots, much harder in higher dimensions

e Input

X Prediction, m=1, n=3

e Input
X Prediction, m=2, n=3
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Active sub-space

» Due to high correlation of parameters, we may be able to reduce

the dimensionality by finding active sub-space

» Method is based on gradient sampling and Eigenvalue problem

Active sub-space of 3D tuning problem (r? = 0.99747)
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Summary

» We have a working solution for a more automated tuning:
e Outer optimisation loop in the weight space
e Minimisation of portfolio objective function
o We will assess performance and scaling with dimensions of inner
and outer parameter space

» Algorithm for multivariate rational approximation

o Initial success but spurious poles are a significant problem
o Active sub-space approach might be a way out



