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Tuning
I Goal: best possible physics prediction of MC generator
I Realistic events contain physics at low scales where perturbation

breaks down
I Rely on model assumptions that introduce many parameters
I Need to find “meaningful” settings
I Can be done manually but hard to do on a reasonable time-scale

because of MC run-time and dimensionality of problem
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Tuning with Professor in a nutshell
I Random sampling: N parameter points in n-dimensional space
I Run generator and fill histograms (e.g. Rivet) trivial parallel
I Polynomial approximation per bin
I Construct goodness-of-fit measure

φ2(~p) =
∑

b

w2
b ·

(fb(~p)−Rb)
2

∆2

I and numerically minimise with iminuit

p

bbb b

best p

data bin

bin interpolation

In the following this will be called the “inner optimisation” problem
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Inner and outer optimisation
I Incompatible datasets and mismodelling in MC generator

necessitate introduction of tuning weights wb

I Adjusting the weights has so far been a manual procedure
I The user would iteratively run the “inner optimisation“ and look

at resulting plots
I We propose an automated procedure for this ”outer optimisation“:

Write goodness-of-fit in terms of histograms/observables
The parameter space is now the observable-weight space
Inner optimisation yields best fit point, p̂, for given

{wO}

p̂ is used to evaluate an objective function for the outer optimisation

φ2(~p| {wO}) =
N∑
O=1

w2
O ·

∑
b∈O

(fb(~p)−Rb)
2

∆2
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Portfolio objective
I For given p̂, we can calculate the per-observable goodness-of fit

νO(p̂| {wO}) =
1

Nbins(O)

∑
b∈O

(fb(p̂| {wO})−Rb)
2

∆2 , O = 1, . . . ,N

I With N such measures, we can calculate mean and standard
deviation

µ(wO,~p∗) =
1
N

N∑
O=1

νO(wO,~p∗)

σ2(wO,~p∗) =
1
N

N∑
O=1

[νO(wO,~p∗)− µ(wO,~p∗)]
2

I And construct an objective function to minimise

min
wO∈[0,1]

λµ(wO,~p∗) + σ2(wO,~p∗), s.t.
N∑
O=1

wO = 1.

5/13



Outer optimisation

I Minimisation of portfolio objective is iterative
I We train a radial basis function and use it to walk through the

weight space
I Convergence is fast but depends on initial guess→multi-start

approach (that’s ok since inner optimisation is really fast)
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Evolution of weights
I This plot shows the {wO} of the outer optimisation
I Controlplot to check that weight space is reasonably sampled
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Evolution of inner optimisation
I This plot shows the p̂ of the inner optimisation
I Shows the correlation of parameters
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Comparison of results
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Rational approximation

I Polynomial approximation does not capture 1/x behaviour well
I E.g. masses in propagators
I →Multivariate rational approximation f (~p) = g(~p)/h(~p)

I With g, h being polynomials of order m, n
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Spurious poles

I Code works in principle but: spurious poles
I For numerical reasons, denominator polynomial can have roots
I Happens if “wrong” m,n are chosen.
I In 1D to easy find roots, much harder in higher dimensions
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Active sub-space
I Due to high correlation of parameters, we may be able to reduce

the dimensionality by finding active sub-space
I Method is based on gradient sampling and Eigenvalue problem
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Summary

I We have a working solution for a more automated tuning:
Outer optimisation loop in the weight space
Minimisation of portfolio objective function
We will assess performance and scaling with dimensions of inner
and outer parameter space

I Algorithm for multivariate rational approximation
Initial success but spurious poles are a significant problem
Active sub-space approach might be a way out
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