Generative Models for Fast Calorimeter Simulation: LHCb Case

Viktoria Chekalina, Egor Zakharov, Fedor Ratnikov, Elena Orlova

NRU Higher School of Economics, Yandex School of Data Analysis

July 09 2018

Context

Simulation in LHC

- The significant part of the computing resources are used for MC simulation in High Energy Physics experiments in LHC
- About 53% of the simulations resources are spent to simulation processes in calorimeters
- In Run 3 a significant increase in luminosity is planned
- We need to speed up the simulation.

Simulating of the Calorimeter Responses

GEANT

- Simulation of the particle passing through the material now is provided by GEANT application.
- GEANT simulation is very detailed
- Calorimeter has less granularity, than GEANT simulation step
- We can simulate detector's response by using simpler model

Formulation of the Simulation Problem

- Input: particle parameters (i.e. 3D momentum + 2D coordinate)
- Output: calorimeter response

Approaches

Shower Library

https://indico.cern.ch/event/740959/

- Store showers, simulated by GEANT
- For input parameters choose the the most suitable shower and, respectively, the detector's response

Generative Model: Variational Auto Encoders(VAE)

- Model samples the energy value in cells of response from the set of distributions
- Parameters of distributions is tuned by training neural network

Generative Model: Generative Adversarial Network(GAN)

- Model consists of two parts: generator tries to create objects similar to real, discriminator tries to distinguish real object from generated
- Training ends when the discriminator stops seeing the differences between real and generated

Classical GAN objective function

- P_{real} the distribution over real data, P_{gen} the distribution over generated data, x real object, \hat{x} generated object, z input noise
- $\max_D \mathbb{E}_{x \sim P_{real}}[\log D(x)] + \mathbb{E}_{\hat{x} \sim P_{gen}}[\log(1 D(\hat{x}))]$
- $\min_{G} \mathbb{E}_{z \sim P_z}[-\log(D(G(z)))]$
- We can choose the measure by which we want to match the distributions.
- The Wasserstein distance can provide a meaningful and smooth representation of the divergence between two distributions

Wasserstein GAN objective function

- $\begin{aligned} \bullet \ & \max_D \mathbb{E}_{y \sim p(y)} D(y) + \mathbb{E}_{\tilde{y} \sim p(\tilde{y})} D(\tilde{y}) + \lambda \mathbb{E}_{\tilde{y} \sim p(\tilde{y})} (\|\nabla_{\tilde{y}} p_{\hat{y}}\| 1)^2, \\ \tilde{y} &= \alpha * y + (1 \alpha) \hat{y} \end{aligned}$
- $\min_G \mathbb{E}_{z \sim p_z(z)}[-D(G(z))]$
- Wasserstein GAN decreases Wasserstein measure between real and generated samples

Wasserstein distance

- $W(P_{real}, P_{gen})$ can be informally interpreted as a cheapest transportation plan to move sand from first pile(distribution) to second
- $\Pi(P_{real}, P_{gen})$ is the set of all possible joint probability distributions ("all possible way to move sand") between P_{real} and P_{gen}
- $\gamma \in \Pi(P_{real}, P_{gen})$ one joint distribution ("one possible transport act"), $\sum_{\hat{x}} \gamma(x, \hat{x}) = P_{real}(x), \sum_{x} \gamma(x, \hat{x}) = P_{gen}(\hat{x})$
- $W(P_{real}, P_{gen}) = \inf_{\gamma \in \Pi(P_{real}, P_{gen})} \mathbb{E}_{(x, \hat{x}) \sim \gamma}[\|x \hat{x}\|]$
- $\sum_{x,\hat{x}} \gamma(x,\hat{x}) \|x \hat{x}\| = \mathbb{E}_{(x,\hat{x}) \sim \gamma} \|x \hat{x}\|$

One of the possible transport plans

Practical Treatment

- Use stand-alone LHCb-like calorimeter GEANT4 setup to produce reference train and test samples
- Consider calorimeter response as a figure of 30*30 calorimeter cells to fit any possible granularity in LHCb calorimeter
- Deep Convolutional Neural Network (DCNN) as a generator and a discriminator
- Generator converts 5 initial particle parameters (3D momentum + 2D coordinate) and the Gaussian noise to response
- We reconstruct 5 initial parameters on every generated images and try to minimize divergence between predicted and input particle parameters (add this term to generator loss)

Training scheme

Metrics of Quality

1D case

Energy fraction

- \bullet E_{init} the energy of particle
- $E_1 = \sum_{i=1}^2 \sum_{j=1}^2 E_{14+i,14+j}$
- $E_2 = \sum_{i=1}^4 \sum_{j=1}^4 E_{13+i,13+j} E_1$
- $E_3 = \sum_{i=1}^6 \sum_{j=1}^6 E_{12+i,12+j} E_2$
- $E_4 = \sum_{i=1}^8 \sum_{j=1}^8 E_{11+i,11+j} E_3$

Metrics of Quality

5D case

Some chosen distributions are reproduced pretty well, some - not quite.
The definition of quality metric is an issue. We can't observe all possible distributions

Time of generation

- 0.04 ms per sample on GPU
- 4.7 ms per sample on CPU

Conclusion

- We developed generative models to generate calorimeter responses.
- Generated responses look similar to real hits
- Described shape's property of response and statistical property of samples' set distributions matches in real and generated data.