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Context

Simulation in LHC

The significant part of the computing resources are used for MC
simulation in High Energy Physics experiments in LHC

About 53% of the simulations resources are spent to simulation processes
in calorimeters

In Run 3 a significant increase in luminosity is planned

We need to speed up the simulation.
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Simulating of the Calorimeter Responses

GEANT

Simulation of the particle passing through the material now is provided by
GEANT application.

GEANT simulation is very detailed

Calorimeter has less granularity, than GEANT simulation step

We can simulate detector’s response by using simpler model

Formulation of the Simulation Problem

Input: particle parameters (i.e. 3D momentum + 2D coordinate)

Output: calorimeter response

3 / 12



Approaches

Shower Library

https://indico.cern.ch/event/740959/

Store showers, simulated by GEANT

For input parameters choose the the most suitable shower and,
respectively, the detector’s response

Generative Model: Variational Auto Encoders(VAE)

Model samples the energy value in cells of response from the set of
distributions

Parameters of distributions is tuned by training neural network

Generative Model: Generative Adversarial Network(GAN)

Model consists of two parts: generator tries to create objects similar to
real, discriminator tries to distinguish real object from generated

Training ends when the discriminator stops seeing the differences between
real and generated
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From GAN to WGAN

Classical GAN objective function

Preal - the distribution over real data, Pgen - the distribution over generated
data, x - real object, x̂ - generated object, z - input noise

maxD Ex∼Preal [logD(x)] + Ex̂∼Pgen [log(1− D(x̂)]

minG Ez∼Pz [− log(D(G(z)))]

We can choose the measure by which we want to match the distributions.

The Wasserstein distance can provide a meaningful and smooth
representation of the divergence between two distributions

Wasserstein GAN objective function

maxD Ey∼p(y)D(y) + Eỹ∼p(ỹ)D(ỹ) + λEỹ∼p(ỹ)(‖∇ỹpŷ‖ − 1)2,
ỹ = α ∗ y + (1− α)ŷ

minG Ez∼pz (z)[−D(G(z))]

Wasserstein GAN decreases Wasserstein measure between real and
generated samples
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Wasserstein Distance

Wasserstein distance

W (Preal ,Pgen) can be informally interpreted as a cheapest transportation
plan to move sand from first pile(distribution) to second

Π(Preal ,Pgen) - is the set of all possible joint probability distributions (”all
possible way to move sand”) between Preal and Pgen

γ ∈ Π(Preal ,Pgen) - one joint distribution (”one possible transport act”),∑
x̂ γ(x , x̂) = Preal(x),

∑
x γ(x , x̂) = Pgen(x̂)

W (Preal ,Pgen) = infγ∈Π(Preal ,Pgen) E(x,x̂)∼γ [‖x − x̂‖]∑
x,x̂ γ(x , x̂)‖x − x̂‖ = E(x,x̂)∼γ‖x − x̂‖

One of the possible transport plans
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Practical Treatment

Use stand-alone LHCb-like calorimeter GEANT4 setup to produce
reference train and test samples

Consider calorimeter response as a figure of 30*30 calorimeter cells to fit
any possible granularity in LHCb calorimeter

Deep Convolutional Neural Network (DCNN) as a generator and a
discriminator

Generator converts 5 initial particle parameters(3D momentum + 2D
coordinate) and the Gaussian noise to response

We reconstruct 5 initial parameters on every generated images and try to
minimize divergence between predicted and input particle parameters (add
this term to generator loss)
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Model Scheme

Generator
input

5x1: 
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

Discriminator

256x4x4

128x8x8

64x16x16

32x32x32

Regressor (pretrained)

256x4x4

128x8x8

64x16x16

32x32x32

real

fake

30x30

30x30

score

input

1x1

5x1

Upsampling 2x + Conv + BN + ReLU

Conv s2 + LeakyReLU (gray = fixed)

CxHxW output tensor size (w/o batch size)

CxHxWCxHxW

noise
Nx1

Training scheme

FC + reshape

concat
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Results

5D: real and generated responses

E 63.7 GeV

px/pz 0.005

py/pz 0.154

E 6.5 GeV

px/pz 0.046

py/pz 0.108

E 15.6 Gev

px/pz -0.196

py/pz -0.036

E 15.6 GeV

px/pz -0.019

py/pz 0.181
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Metrics of Quality

1D case

Qualitative evaluation (input = pz)
Distributions inside calorimeter regions

r = 1
r = 2
r = 3
r = 4

8

Energy fraction

Einit - the energy of particle

E1 =
∑2

i=1

∑2
j=1 E14+i,14+j

E2 =
∑4

i=1

∑4
j=1 E13+i,13+j−E1

E3 =
∑6

i=1

∑6
j=1 E12+i,12+j−E2

E4 =
∑8

i=1

∑8
j=1 E11+i,11+j−E3

10 / 12



Metrics of Quality

5D case

Some chosen distributions are reproduced pretty well, some - not quite.
The definition of quality metric is an issue. We can’t observe all possible
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Time of generation

0.04 ms per sample on GPU

4.7 ms per sample on CPU

Conclusion

We developed generative models to generate calorimeter responses.

Generated responses look similar to real hits

Described shape’s property of response and statistical property of samples’
set distributions matches in real and generated data.
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