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Context

Simulation in LHC

o The significant part of the computing resources are used for MC
simulation in High Energy Physics experiments in LHC

@ About 53% of the simulations resources are spent to simulation processes
in calorimeters

@ In Run 3 a significant increase in luminosity is planned
@ We need to speed up the simulation.




Simulating of the Calorimeter Responses

e Simulation of the particle passing through the material now is provided by
GEANT application.

o GEANT simulation is very detailed

o Calorimeter has less granularity, than GEANT simulation step

@ We can simulate detector’s response by using simpler model

Formulation of the Simulation Problem

@ Input: particle parameters (i.e. 3D momentum + 2D coordinate)

@ Output: calorimeter response




Approaches
Shower Library

https://indico.cern.ch/event/740959/
@ Store showers, simulated by GEANT

@ For input parameters choose the the most suitable shower and,
respectively, the detector’s response

Generative Model: Variational Auto Encoders(VAE)

@ Model samples the energy value in cells of response from the set of
distributions

@ Parameters of distributions is tuned by training neural network
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Generative Model: Generative Adversarial Network(GAN)

@ Model consists of two parts: generator tries to create objects similar to
real, discriminator tries to distinguish real object from generated

@ Training ends when the discriminator stops seeing the differences between
real and generated




From GAN to WGAN
Classical GAN objective function

@ Preas - the distribution over real data, Pge, - the distribution over generated
data, x - real object, X - generated object, z - input noise

maxp E.~p,,, [log D(x)] + Es~p,.,[log(1l — D(X)]
o ming E,p. [~ log(D(G(2)))]

We can choose the measure by which we want to match the distributions.

@ The Wasserstein distance can provide a meaningful and smooth
representation of the divergence between two distributions

Wasserstein GAN objective function

o maxp By p(y) D(¥) + Egmp(s) D(7) + MBI Vips || = 1)%,
J=axy+(1-a)y

° ming E.p, (5[ D(G(2))]

@ Wasserstein GAN decreases Wasserstein measure between real and
generated samples
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Wasserstein Distance
Wasserstein distance

® W/(Preat, Pgen) can be informally interpreted as a cheapest transportation
plan to move sand from first pile(distribution) to second

M(Prear, Pgen) - is the set of all possible joint probability distributions (" all
possible way to move sand”) between Pres and Pgen

v € MN(Preas, Pgen) - one joint distribution (" one possible transport act"),
25 V06 R) = Preai(x), 32, 7(x, %) = Pgen(X)
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Practical Treatment

@ Use stand-alone LHCb-like calorimeter GEANT4 setup to produce
reference train and test samples

o Consider calorimeter response as a figure of 30*¥30 calorimeter cells to fit
any possible granularity in LHCb calorimeter

@ Deep Convolutional Neural Network (DCNN) as a generator and a
discriminator

@ Generator converts 5 initial particle parameters(3D momentum + 2D
coordinate) and the Gaussian noise to response

@ We reconstruct 5 initial parameters on every generated images and try to
minimize divergence between predicted and input particle parameters (add
this term to generator loss)
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Model Scheme

Training scheme
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Results
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5D: real and generated responses
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Metrics of Quality

Energy in band r=1 Energy resolution in band r=1
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Metrics of Quality

5D case
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@ Some chosen distributions are reproduced pretty well, some - not quite.
The definition of quality metric is an issue. We can't observe all possible
distributions S




@ 0.04 ms per sample on GPU
@ 4.7 ms per sample on CPU
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Conclusion
o We developed generative models to generate calorimeter responses.

@ Generated responses look similar to real hits

@ Described shape's property of response and statistical property of samples’
set distributions matches in real and generated data.
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