
Parallelized and Vectorized Tracking
Using Kalman Filter with CMS
Detector Geometry and Events

G. Cerati4, P. Elmer3, M. Kortelainen4, S. Krutelyov1, S. Lantz2,
 M. Lefebvre3, M. Masciovecchio1, K. McDermott2, B. Norris5,

 D. Riley2, M.Tadel1, P.Wittich2, F.Würthwein1, A.Yagil1

1. UCSD 2. Cornell 3. Princeton 4. FNAL 5. U of Oregon

1 CHEP 2018, Sofia, Bulgaria

Outline

¥  Project introduction
¥  Motivation for many-core Kalman filter implementation

¥  Some project details
¥  Geometries, event data
¥  Vectorization & Multi-threading
¥  Architectures & Compilers

¥  Current focus & Status
¥  Physics performance, scaling

¥  Conclusion

2

Project overview
¥  Cornell, Princeton, UC San Diego + Fermilab (all CMS).

¥  3-year NSF grant, now in extension year + CMS R&D project – focus on algorithm development
¥  Fermilab and University of Oregon: 3 year DOE SciDAC4 grant (started January 2018) – focus on optimization

¥  Mission statement: Explore Kalman filter based track finding and track fitting on many-
core SIMD and SIMT architectures:

¥  KF performance well understood, handles multiple-scattering and energy loss well (badly needed)
¥  complementary to tracklet-based divide and conquer algorithms

¥  Goal: Run in CMS HLT for Run3 and beyond; maybe also parts of offline reconstruction

3

C
M

S
 P

ha
se

 0

Project details – What we do and How

 Code name: mkFit – Matriplex Kalman Fitter / Finder

4

One slide status report
¥  Current focus: Track finding on CMS-2017 geometry, Iteration 0 tracking

¥  KNL / Xeon ➛ AVX-512
¥  Iteration 0 = Starting from pixel seeds having 4 hits with beam spot constraint
¥  Using CMSSW generated events:

¥  10 muon events (for development), ttbar, ttbar + 35 or 70 PU
¥  Stand-alone: use a simple event data format, basically a memory dump of our structures.
¥  Within CMSSW – in progress, first results already available;

¥  mkFit is deployed as external package + CMSSW module ➙ data producer

We can run track finding on full detector, iteration 0, physics performance comparable to CMSSW.

¥  Things we have also done:
¥  Extensive validation suite.
¥  Track fitting (forward / backward) – this was initial task and a great success.

¥  Will probably return to this to explore also mkFit-based track post-processing.
¥  Seed finding – abandoned, we use CMSSW seeds.
¥  Development on GPUs (CUDA) is proceeding in parallel. Currently doing in-depth investigation

of actually achievable peak performance for fitting and finding (memory/cache bw/ limitations). 5

Geometry description & approximation

Unlike CMSSW, we DO NOT deal with detector modules! We use
layers only:
●  Propagate to the center of a layer and perform hit pre-selection.
●  Requires additional propagation step for every compatible hit!

○  But this really vectorizes well. [And we do not have to propagate to a module.]
●  Stereo: mono / stereo modules are put into separate layers.
●  Can only pick up one hit per layer on outward propagation.

○  Could pickup overlap hits during backward fit, or after, for layers where it
matters.

●  Simplifies track steering code and minimizes candidate
specific code.

Geometry is implemented as a plugin! mkFit is NOT CMS specific.
6

See extras

Multi-threading, Vectorization, Architectures & compilers

For multi-threading we use TBB:
●  Two parallel_fors over tracking regions (5) and seeds (16 or 32 seeds per task)
●  parallel_for over events - multiple events in flight

○  This is crucial for plugging the gaps arising from unequal load in track finding tasks!

Vectorization:
●  Propagation, simple loops – compiler assisted with pragma simd
●  Kalman Filter operations – Matriplex, developed as part of the project

Architectures & compilers:
●  x86_64 (AVX, AVX-512), KNC (MIC), KNL (AVX-512)

○  icc, gcc; we use c++14

●  Nvidia / CUDA
○  Have implementations of track fitting and track finding (best hit and cache optimized version)

7

See extras

Current focus & Status

8

●  Meaningful comparison of track finding with CMSSW for Iteration 0
○  Physics performance – almost there:

■  Polishing the edges, tuning of track finding parameters
■  Use cluster charge information to remove hits due to out of time pileup
■  Still need to implement cleaning / merging of resulting tracks

■  While we do seed cleaning, we get duplicates & ghosts, especially in the endcaps
where there are a lot of module overlaps within layers.

○  Computational performance, i.e. speed, scaling, and memory footprint
■  x86_64 (Skylake Silver vs. Gold), KNL

●  Finalization of CMSSW Integration
¡  Consolidation of complete work-chain, including outlier rejection & final fitting

●  Still have some ideas to further improve vectorization speedup and overall
performance.

What we are working on now

9

Muon gun & ttbar no pileup

●  Efficiency denominator: findable sim-tracks
with a matching seed.
○  Remember – this is iteration 0 / initial step using pixel

quadruplets as seeds

A.  10 mu per event, pt from 0.5 to 10 GeV
○  Practically fully efficient, zero fake rate
○  Duplicate rate spikes to ~50% in endcaps

■  Direct consequence of seed duplicates

■  Should go away once we implement cleaning
and merging

B.  ttbar no pileup - basically the same as 10 muon events
o  Some fakes in transition region (~5% eta 1.2 to 1.7)

o  Cleaning / merging can reduce this 10

ttbar no pileup

ttbar no pileup

CMSSW uses stricter
track quality cuts

ttb
ar

, n
o

pi
le

up

11

ttbar + 70 PU

●  Efficiency comparable for pt > 0.5 GeV
○  Exploration of endcap inefficiency is ongoing

●  Fake rate is more significant
○  Final cleaning should help
○  Investigate quality criteria

●  Duplicate rate similar to no pileup / muon
case
○  Which means it has the same origin – duplicates

in input seed collection.
○  Post-build cleaning / merging will get this down to

CMSSW levels

12

CMSSW Integration – Preliminary Results

●  mkFit is wrapped in a standard CMS module / data producer:
○  compiled as an external library
○  tracker hits and seeds as input – convert them to format expected by mkFit
○  produces standard Track collection as input

●  Running in CMSSW gives us access to standard CMS validation tools.
Denominator: simulated tracks
 (physics efficiency
○  inefficiencies dominated by tracker acceptance

(Iter 0 tracking requires 4 out of 4 pixel lyrs)
○  10 Mu gun – perfect match

●  Some small issues still to be resolved.
●  Ready for detailed validation &

performance optimizations.
13 10 Mu gun

Computational performance
●  Vectorization (building only) gives about

2 to 3x speedup (AVX, AVX-512)
●  For multi-threading, having multiple

events in flight is crucial!
○  Currently cleaning up “administrative” tasks we

didn’t care much about before, e.g., loading of
hits, seed cleaning.

●  Compared to CMSSW, mkFit is about
10x faster (both single-thread).
○  Intentionally vague as this is work in progress.

○  icc significantly boosts mkFit performance

●  ttbar + 70 PU @ KNL: 115 events / s
@ Skylake Au (32 core): 250 events / s

14

KNL

Conclusion

15

Conclusion

●  mkFit is basically ready to be used in testing environment of CMS HLT
○  investigate efficiency discrepancies for low-pT / endcap tracks in high pileup data

○  implement post-build cleaning to reduce duplicate rate
○  improve scaling – optimization of code that was considered “out of scope” until now

●  mkFit is approaching its first production release.
○  Opportunity to do some deep cleaning of the code.

●  Code is in principle quite general … but mkFit is not a ready to use tracking
package
○  We will continue to make efforts in that direction.

16

Extras – CMS geometry in mkFit

17

Cylindrical Cow with Lids

●  Simple basic geometry
○  transition region |eta| 1 to 1.3
○  “long” pixels on all layers

●  Supporting several geometries keeps
tracking algorithms independent of actual
geometry!
○  And points to required generalizations

●  Geometries are implemented as a plugin /
code that runs during program initialization
and sets up geometry and algorithm
steering structures.

18

CMS-2017

19

●  Top – what is usually
shown.
○  Lines at layer centroids

●  Bottom – actual size of
layers accounted for.
○  Actual geometry used by

mkFit.
○  Extracted automatically

from CMS sim hit data.
○  Note: stripes on endcap

disks are results of partial
stereo layer coverage

CMS, example of an endcap disk

20

Extras – Matriplex

21

Matriplex - Vectorization of small matrix operations

22

Matriplex - GenMul code generator

GenMul.pm - Generate matrix Multiplication code for given matrix dimensions
Features:
●  Generate C++ code or Intrinsics (AVX, MIC, AVX-512)

○  Output is then included into a function.
○  For intrinsics it takes into account instruction latencies

●  Can be told about known 0 and 1 elements in input and output matrices:
○  This reduces number of operations by more than 40%!

●  Can do on-the-fly transpose of input matrices
○  Avoids transposition for similarity transformation.

We use this for vectorizing all Kalman filter related operations.

For propagation we rely on compiler vectorization (#pragma simd for the outer
propagation loop over track candidates). 23

