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Project overview 
¥  Cornell, Princeton, UC San Diego + Fermilab (all CMS). 

¥  3-year NSF grant, now in extension year + CMS R&D project – focus on algorithm development 
¥  Fermilab and University of Oregon: 3 year DOE SciDAC4 grant (started January 2018) – focus on optimization 

¥  Mission statement: Explore Kalman filter based track finding and track fitting on many-
core SIMD and SIMT architectures: 

¥  KF performance well understood, handles multiple-scattering and energy loss well (badly needed) 
¥  complementary to tracklet-based divide and conquer algorithms 

¥  Goal: Run in CMS HLT for Run3 and beyond; maybe also parts of offline reconstruction 
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Project details – What we do and How 
 

 Code name: mkFit – Matriplex Kalman Fitter / Finder 
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One slide status report 
¥  Current focus: Track finding on CMS-2017 geometry, Iteration 0 tracking 

¥  KNL / Xeon ➛ AVX-512 
¥  Iteration 0 = Starting from pixel seeds having 4 hits with beam spot constraint 
¥  Using CMSSW generated events: 

¥  10 muon events (for development), ttbar, ttbar + 35 or 70 PU 
¥  Stand-alone: use a simple event data format, basically a memory dump of our structures. 
¥  Within CMSSW – in progress, first results already available; 

¥  mkFit is deployed as external package + CMSSW module ➙ data producer 

We can run track finding on full detector, iteration 0, physics performance comparable to CMSSW. 

¥  Things we have also done: 
¥  Extensive validation suite. 
¥  Track fitting (forward / backward) – this was initial task and a great success. 

¥  Will probably return to this to explore also mkFit-based track post-processing. 
¥  Seed finding – abandoned, we use CMSSW seeds. 
¥  Development on GPUs (CUDA) is proceeding in parallel. Currently doing in-depth investigation 

of actually achievable peak performance for fitting and finding (memory/cache bw/ limitations). 5 



Geometry description & approximation 

Unlike CMSSW, we DO NOT deal with detector modules! We use 
layers only: 
●  Propagate to the center of a layer and perform hit pre-selection. 
●  Requires additional propagation step for every compatible hit! 

○  But this really vectorizes well. [ And we do not have to propagate to a module. ] 
●  Stereo: mono / stereo modules are put into separate layers. 
●  Can only pick up one hit per layer on outward propagation. 

○  Could pickup overlap hits during backward fit, or after, for layers where it 
matters. 

●  Simplifies track steering code and minimizes candidate 
specific code. 

Geometry is implemented as a plugin! mkFit is NOT CMS specific. 
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Multi-threading, Vectorization, Architectures & compilers 

For multi-threading we use TBB: 
●  Two parallel_fors over tracking regions (5) and seeds (16 or 32 seeds per task) 
●   parallel_for over events - multiple events in flight 

○  This is crucial for plugging the gaps arising from unequal load in track finding tasks! 

Vectorization: 
●  Propagation, simple loops – compiler assisted with pragma simd 
●  Kalman Filter operations – Matriplex, developed as part of the project 

Architectures & compilers: 
●  x86_64 (AVX, AVX-512), KNC (MIC), KNL (AVX-512) 

○  icc, gcc; we use c++14 

●  Nvidia / CUDA 
○  Have implementations of track fitting and track finding (best hit and cache optimized version) 
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Current focus & Status 
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●  Meaningful comparison of track finding with CMSSW for Iteration 0 
○  Physics performance – almost there:  

■  Polishing the edges, tuning of track finding parameters 
■  Use cluster charge information to remove hits due to out of time pileup 
■  Still need to implement cleaning / merging of resulting tracks 

■  While we do seed cleaning, we get duplicates & ghosts, especially in the endcaps 
where there are a lot of module overlaps within layers. 

○  Computational performance, i.e. speed, scaling, and memory footprint 
■  x86_64 (Skylake Silver vs. Gold), KNL 

●  Finalization of CMSSW Integration 
¡  Consolidation of complete work-chain, including outlier rejection & final fitting 

●  Still have some ideas to further improve vectorization speedup and overall 
performance. 

What we are working on now 
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Muon gun & ttbar no pileup 

●  Efficiency denominator: findable sim-tracks 
with a matching seed. 
○  Remember – this is iteration 0 / initial step using pixel 

quadruplets as seeds 

A.  10 mu per event, pt from 0.5 to 10 GeV 
○  Practically fully efficient, zero fake rate 
○  Duplicate rate spikes to ~50% in endcaps 

■  Direct consequence of seed duplicates 

■  Should go away once we implement cleaning 
and merging 

B.  ttbar no pileup - basically the same as 10 muon events 
o  Some fakes in transition region (~5% eta 1.2 to 1.7) 

o  Cleaning / merging can reduce this 10 

ttbar no pileup 

ttbar no pileup 

CMSSW uses stricter 
track quality cuts 
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ttbar + 70 PU 

●  Efficiency comparable for pt > 0.5 GeV 
○  Exploration of endcap inefficiency is ongoing 

●  Fake rate is more significant 
○  Final cleaning should help 
○  Investigate quality criteria 

●  Duplicate rate similar to no pileup / muon 
case 
○  Which means it has the same origin – duplicates 

in input seed collection. 
○  Post-build cleaning / merging will get this down to 

CMSSW levels 
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CMSSW Integration – Preliminary Results 

●  mkFit is wrapped in a standard CMS module / data producer: 
○  compiled as an external library 
○  tracker hits and seeds as input – convert them to format expected by mkFit 
○  produces standard Track collection as input 

●  Running in CMSSW gives us access to standard CMS validation tools. 
Denominator: simulated tracks 
                     (physics efficiency  
○  inefficiencies dominated by tracker acceptance 

(Iter 0 tracking requires 4 out of 4 pixel lyrs) 
○  10 Mu gun – perfect match 

●  Some small issues still to be resolved. 
●  Ready for detailed validation &  

performance optimizations. 
13 10 Mu gun 



Computational performance 
●  Vectorization (building only) gives about 

2 to 3x speedup (AVX, AVX-512) 
●  For multi-threading, having multiple 

events in flight is crucial! 
○  Currently cleaning up “administrative” tasks we 

didn’t care much about before, e.g., loading of 
hits, seed cleaning. 

●  Compared to CMSSW, mkFit is about 
10x faster (both single-thread). 
○  Intentionally vague as this is work in progress. 

○  icc significantly boosts mkFit  performance 

●  ttbar + 70 PU     @ KNL:  115 events / s 
@ Skylake Au (32 core):  250 events / s 
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Conclusion 
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Conclusion 

●  mkFit is basically ready to be used in testing environment of CMS HLT 
○  investigate efficiency discrepancies for low-pT / endcap tracks in high pileup data 

○  implement post-build cleaning to reduce duplicate rate 
○  improve scaling – optimization of code that was considered “out of scope” until now 

●  mkFit is approaching its first production release. 
○  Opportunity to do some deep cleaning of the code. 

●  Code is in principle quite general … but mkFit is not a ready to use tracking 
package 
○  We will continue to make efforts in that direction. 
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Extras – CMS geometry in mkFit 
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Cylindrical Cow with Lids 

●  Simple basic geometry 
○  transition region |eta| 1 to 1.3 
○  “long” pixels on all layers 

●  Supporting several geometries keeps 
tracking algorithms independent of actual 
geometry! 
○  And points to required generalizations 

●  Geometries are implemented as a plugin / 
code that runs during program initialization 
and sets up geometry and algorithm 
steering structures. 
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CMS-2017 
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●  Top – what is usually 
shown. 
○  Lines at layer centroids 

●  Bottom – actual size of 
layers accounted for. 
○  Actual geometry used by 

mkFit. 
○  Extracted automatically 

from CMS sim hit data. 
○  Note: stripes on endcap 

disks are results of partial 
stereo layer coverage 



CMS, example of an endcap disk 
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Extras – Matriplex 
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Matriplex - Vectorization of small matrix operations 
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Matriplex - GenMul code generator 

GenMul.pm - Generate matrix Multiplication code for given matrix dimensions 
Features: 
●  Generate C++ code or Intrinsics (AVX, MIC, AVX-512) 

○  Output is then included into a function. 
○  For intrinsics it takes into account instruction latencies 

●  Can be told about known 0 and 1 elements in input and output matrices: 
○  This reduces number of operations by more than 40%! 

●  Can do on-the-fly transpose of input matrices 
○  Avoids transposition for similarity transformation. 

We use this for vectorizing all Kalman filter related operations. 

For propagation we rely on compiler vectorization (#pragma simd for the outer 
propagation loop over track candidates). 23 


