/2 3RD INTERNATIONAL CONFERENCE ON 913 July 2018

chep2ois~ COMPUTING IN HIGH ENERGY AND NUGLEAR PHYSIGS Sofia, Bulgaria

Track2 (Offline Computing); 9 July 2018

A scalable and asynchronous detector simulation

system based on ALFA (FairMQ)
Sandro Wenzel (CERN), for the ALICE collaboration %ﬂi%
Au ALICE

The ALICE simulation environment:; From Run2 to Run3

SimEngines {Geant4, Geant3, FLUKA}

Virtual Monte Carlo Layer
ALIROOT

Detector Description (TGeo)

Physics Modelling (Hits)

Services: MagField, 10,
VMCApplication, Logging, EventLoop,
etc.

Run2

Sandro Wenzel: CHEP18 Sofia, Track?

see |. Hrivnacova talk (track?2) for complementary info

The ALICE simulation environment:; From Run2 to Run3

SimEngines {Geant4, Geant3, FLUKA}

Virtual Monte Carlo Layer 42)
ALICE-02

ALIROOT

Detector Description (TGeo)

Physics Modelling (Hits)
VMCApplication, Logging, EventLoop,

m
etc.

Run2 Run3

Keep the big picture; Make in-house code smaller;
Potentially benefit from new developments (e.g., FairMQ)

Detector Description (TGeo)

Physics Modelling (Hits)

Services: MagField, 10O,

Sandro Wenzel: CHEP18 Sofia, Track?

https://indico.cern.ch/event/587955/contributions/2937622/

Motivation: The ALICE simulation scale

4000

Simulating Pb-Pb collision can be very demanding
1500 L NUMbDErs

> may have up to 100k primaries in the collision to transport | Indieative only

Heavyweight resource utilization using standard single- 2500 |

core event based simulation (FairRoot)

2000 F

real memory [MB]

1500 F

> ~O(GBs) of memory / event
1000 F

> may be ~O(h) of CPU time / event

°00 E

. \ . 2 central Hijing events ——
0 1000 2000 3000 4000 5000 6000 7000
time [s]

0

Consequences:

> typically bad for scheduling and efficiently using given
resource (packing problem)

P prevents access to (opportunistic) HPC

P sub-optimal user experience

Sandro Wenzel: CHEP18 Sofia, Track?

The goal : Improve on this situation

-+ Goal: A simulation system running on anything from laptop to

many-core and HPC facilities

> get result faster (if resource available) for any given event

P pbe able to utilize smallest opportunistic resources

> support VMC (not relying on a particular simulation engine)

P user convenience (same events; same output file regardless

where and how run)

- Ingredients put forward here:

> iIndependent actors based o
processing and message passi

N heterogenous multi-

N9

> event splitting and collaborative simulation parallelism

Sandro Wenzel: CHEP18 Sofia, Track?

How? Use FairMQ as foundation

ALFA: ALICE-FAIR new message gqueuing based framework; Track 5

FairMQ = Fair(MessageQueue) is an abstract
messaging library for C++

Enables systems of heterogenous actors
which can be used to have

asynchronous and parallel computing

easy scalability from single node to
complex cluster

Does not replace multi-threading but
complements it

Easy to use ... in particular to strip apart
existing applications

Send(channel, message);

OnData(Kernel);

// callback for incoming message
vold Kernel(FairMQMessage message) 1
// process message

¥

Sandro Wenzel: CHEP18 Sofia, Track? E

https://indico.cern.ch/event/587955/contributions/2938082/

Ingredient 1: Separation of concern with FairMQ

- Break existing monolithic simulation - Is it easy? ... Yes!
into few actors with specialized

P Have actors and communication setup in a
concern

few lines of code with FairMQ

P deployed on same or different nodes

> C++ object exchange trivial thanks to ROOT
serialisation (in principle no special care
needed)

- We gain:

> Concurrent event generation,
particle transport and 10O

event hits

EventGen(Server)

Hit 10 (Readout)

»
»

\ Hit 10 (Readout)

Sandro Wenzel: CHEP18 Sofia, Track?

FaSt commun |Ca't|0ﬂ / Shared memOry see posters 305 (A. Rybalchenko) and 366 (D. Klein)

Some overhead when sending C++ structures - Implemented a scheme similar to data acquisition:

P need to copy/serialize/deserialize » The sim workers directly put their C++ hits data into a

_ shared buffer
Fast alternatives such as shared memory transport

within one node are possible and supported by » Readout process streams directly from shared
FairMQ memory

> Not a single copy; not a single pack/unpack; but
some need for synchronization

shared memory buffer

std::vector<TPCHit>

‘ss readout
event
EventGen(Server) [SimWorker — Hit 10 (Readout)
“readout

trigger”

Sandro Wenzel; CHEP18 Sofia, Track2 [}

https://indico.cern.ch/event/587955/contributions/2938141/
https://indico.cern.ch/event/587955/contributions/2938030/

Ingredient 2: Event splitting

Event-Splitting:

> provide less resource demanding work items

What do we gain?

P lower memory profile; potential for

full event collaboration; fit work to small time windows
EventGen(Server) s m - Is it easy?
sub-events P yes, since primaries are independent

(one at a time) P previous experience also by ATLAS with

D lc customized G4
e

- r
¥ 4

> might just complicate bookkeeping (MC truth)

A
Participan

Sandro Wenzel; CHEP18 Sofia, Track2 [

Benchmark single worker

s this beneficial straight away or is there an 600
overhead? O monolithic O split actors
- Works well with typical 141eV p-p events: 450
P gain few percent from split asynchronous @
components “é 300
P gain higher than transport cost >

P essentially no additional gain from shared 150
memory In this scenario

- A different test with large Pb-Pb also shows no 0

negative impact due to sub-event splitting. 224 36 48 60 72
number of p-p events

EventGen(Server) = m 8 Hit 10 (Readout)

Sandro Wenzel: CHEP18 Sofia, Track?

Ingredient 3: Collaborative Parallel Simulation

S5ased on the previous steps, the idea is to fan out the number of simulation workers
- Target a diamond workflow for user-experience (but easy to change)

- Scenario, where workers collaborate on transport/simulation
P given set of events

P even on same event via (sub-events)

sub-events m hits
< o o=

Sandro Wenzel: CHEP18 Sofia, Track?

EventGen(Server)

A scaling study : Memory

Isn’t there a memory problem with too
many workers?

b after all a single G4 worker has ~500MB
of initial memory usage (before run-stage)

Absolutely not!

P Implemented mechanism based on late
forking

letting all simulation workers share the same
simulation setup (geometry, x-sections) with
“copy-on-write”

> works exceptionally well

comparison of max memory consumption
demonstrates superior scaling for forked version

max memory (MB)

5000

0o
~
a
o

2500

1250

0

shared engine memory
(geometry, x-sections, etc.)

=
N I

O separate procs
O late-forked procs

1

2 3 4 5 o6 7 8 9

number of simulation (G4) workers

Sandro Wenzel: CHEP18 Sofia, Track?

A scaling study : Speedup

25 | |
So what about the speedup? ntel Xeon E5.2660 v4 @
Intel i7-5930K —
Tested system collaborating on few large Pb-Pb O ‘
event (60K primaries each) as a function of the
number of workers g 7 ‘
O
8
Very good (strong) scaling up to number of co10 :
physical cores
o r .
51g Pb-Pb events are now accessible in a
few minutes 0 ' ' ' '
0)) 10 15 20 25
number simulation workers
Together with good memory behaviour, this
enables scheduling on (opportunistic) HPC * preliminary -
e sub-event size of 500
resources e turbo boost disabled

e zmq transport (N0 shared memory)
¢ |O merger becomes a bottleneck for ~26 worker jobs

Sandro Wenzel: CHEP18 Sofia, Track?

Elastic (and Volunteer) Computing

- Architecture is the typical foundation for elastic computing which we get as free lunch (really!!)

he number of workers can dynamically change at any time
 Volunteer workers can attach anywhere to a running production

- Probably not a primary goal but nice to have

sub-event

I

\ % g
| b Bill Nitzberg -~
Nits

&

“oZ2sim_join -eventserverIP xxx -hitmergerIP yyy"

Sandro Wenzel: CHEP18 Sofia, Track?2

Conclusions

N the Run3 ALICE simulation based on FairMQ ...

... wWe sub-event parallelized Geant4, Geant3 and FLUKA at the same time
.. may collaborate on a single event

.. are HPC ready

.. do event generation, transport and |O asynchronously

.. provide user convenience: single merged file, single source of events

... have elasticity and are agile (can change deployment easily and scale across
NOdes)

Sandro Wenzel: CHEP18 Sofia, Track?

BACKUP SECTION

Sandro Wenzel: CHEP18 Sofia, Track?

Heterogeneous Simulation

An interesting extension Is onared engne memony
heterogenous computing: simulation
workers can take different flavours sup-events n hits

p G3 / G4 / Fluka collaborate on same m
o ﬂ/
- (e.q., as a function of particle type, energy)

P Attach workers doing fast simulation
kernels

Sandro Wenzel: CHEP18 Sofia, Track?

Collaborative Parallel Workers or Trivial Parallelism??

shared engine memory : shared engine memory
(geometry, x-sections, etc.) (geometry, x-sections, etc.)

. O oD
m @ = e o
em 2 EE o

- . | more traditional;
collaborative; user friendly;
petter to transport large H

Might be better In
events quickly casy certain situations such
switch

as small events

Sandro Wenzel: CHEP18 Sofia, Track?

Cou p‘ | NQg to Data Process gle see G. Eulisse: Evolution of the ALICE Software Framework for LHC Run 3

Messaging architecture allows direct forwarding of simulation products to the data
processing (on a different node) without need for intermediate storage

possible fully asynchronous simulation, digitization, reconstruction, etc.

shared engine memory
(geometry, x-sections, etc.) : TPC digitizer

o=

Sandro Wenzel: CHEP18 Sofia, Track?

https://indico.cern.ch/event/587955/contributions/2938144/

