
Perspectives for the migration of the LHCb geometry to the DD4hep toolkit
S.Borghi1, C.Burr1, M. Clemencic2, G.Corti2, B. Couturier2, L.Grillo1, M.Frank2 on behalf of the LHCb collaboration

1The University of Manchester, 2CERN

LHCb Geometry LHCb GeometryDD4hep Toolkit2

The generic description model The toolkit components

Detector description framework in LHCb1

Integration prototype

Stable framework for the last 15 years but…

● Lack of effort to develop the framework
● Codebase suited to non multithreaded Gaudi
● Considerable room for improvements

● Better integration of simplfied geometry
● Redesign how we pass it to the Geant4 simulation
● Integration with other simulation engines to be

investigated

Custom geometry toolkit means that LHCb must
develop all associated tools...

LHCb Geometry as loaded by the DD4hep DDDB Module
(visualization using ROOT)

Long term issuesPersistent format and future functionality

LHCb Upgrade Geometry as loaded by the DD4hep DDDB Module

DDDB module from DD4hep

• Part of the DD4hep examples
• Allows loading the LHCb geometry

… with some workarounds….

Alignment functionalityGeometry validation

LHCb Upgrade Vertex locator. Picture Copyright NIKHEF

LHCb Geometry instance diagram

Detector alignment is a crucial functionality in HEP

• Currently working on a prototype of the LHCb Upgrade
Vertex locator (Velo) Alignment functionality using the
DD4hep prototype

Current integration prototype allows to:

• Compile the DD4hep codebase in a way
compatible with the LHCb software stack

• Load the LHCb Geometry with:
• The LHCb code base
• DD4hep
within the same process

• Compare both representations in
memory with custom scripts

• Adapt the LHCb Geometry with a local
GIT repository

• Push back changes to the DD4hep code
base

Geometry Class design

• Compatible class structure between the LHCb Geometry
and the TGeo object model

• Volume libraries are also consistent
• Allows to compare in memory if both geometries are

identical

ROOT TGeo hierarchy in memory
(from ROOT User’s guide)

Detector Elements classes

• C++ with custom classes for each sub-detector
• No automated port between the LHCb and the DD4hep

representations

Geometry comparison done in two ways

• Hierarchical comparison of the volume trees
• Traversal of the detector on various paths to list

volumes traversed and total radiation length

Conclusion of the current studies

• Good match between the two geometries
• Found/fixed minor problems with the DD4hep DDDB

loader

• DD4hep DDDB loader is not a long term solution
• Need to change LHCb’s representation of the

geometry

• Need to validate (mis)alignment functionality

• And integrate with the Simulation framework

LHCb Geometry is not a good match with DD4hep

• Placements defined directly in the Geometry XML
• Works but is inflexble and difficult to debug

• DD4hep Compact XML approach
• Volumes defined in XML
• Placement done by C++ code

DDAlign functionality

Prototype focusing on one detector: the LHCb VeloPIx
• Could check that the Velo sensors are placed correctly in

the ideal geometry
• Investigating the functionality missing to implement the full

Velo alignment

Converting the LHCb Upgrade Geometry is a major task

• Fully automated conversion will be hard
• Of course tools can help, especially for validation

• Will require validation by all sub-detectors
• Huge amount of work to follow up….

What do we gain ?

LHCb Simplified Velo geometry

Analysis of Run1 and 2 data does not stop at the upgrade

• We need to keep improving the simulation for the Run 1 and Run 2 dectector
• Without keeping both the LHCb Geometry AND DD4hep code bases alive….
• And without migrating the run 1 and 2 geometry to DD4hep
• The LHCb Simulation application needs to be updated accordingly3

• Can adapt the simulation framework to take GDML snaphots of the geometry
• We need several snapshots depending of the data taking year
• Simulation conditions will be loaded from the current database

LHCb current Geometry representation is very inflexible
• Either track and simulate with full detector
• Or track in the (ultra) simplified geometry

Current simplified geometry is a parallel representation
done by hand with no links with the full geometry

Need to work on a more flexible framework
• Compact XML C++ constructors could give us that

flexibility
• New design opens the door to such projects

• Porting LHCb to new geometry framework is a major endeavour, with major gains at hand...

• Would get LHCb out of a dead end, and allow the experiment to share and collaborate on
geometry representation and visualzation tools

• Requires extremely thorough checks at all levels

Custom geometry also means custom tools
• LHCb developed the Panoramix event viewer

usingOpenScientist
• Allows using related tools for visualization

Using the full geometry hinders performance
• Tracking in the full geometry too slow for the LHCb trigger
• Simulation represents ~2/3rds of LHCb CPU use on the grid

DD4hep is part of an ecosystem

• Uses ROOT TGeo as in-memory representation

• Allows using related tools for visualization and checks

[1] Detector description framework in LHCb, S. Ponce, CERN. CHEP 2003, San Diego, USA, March 24-28, 2003
[2] DD4hep Toolkit, https://dd4hep.web.cern.ch/dd4hep/
[3] Adopting new technologies in the LHCb Gauss simulation framework, D.Muller CHEP 2018
[4] New Developments in DD4hep, M.Petric CHEP 2018
[5] Conditions and Alignment extensions to the DD4hep Detector Description Toolkit, M. Frank CHEP 2018

DD4hep toolkit already used by other experiments (Linear Collider community, evaluation by CMS).
For more information see 4 and 5.

https://dd4hep.web.cern.ch/dd4hep/

	Slide 1

