
Current and Future Performance
of the CMS Simulation

Kevin Pedro (FNAL)
on behalf of the CMS Collaboration

July 9, 2018

• CMS full simulation uses Geant4

• Sim is 40% of total CPU time used by CMS
→ most expensive “step” in MC production
(vs. generation, digitization, reconstruction)

• Largest contributors to CPU usage in Geant4:
geometry, magnetic field, EM physics

• CMS has implemented numerous technical
options and approximations to improve CPU
usage in the simulation

• Continue to explore new options and improvements

 Including GeantV, vectorized transport engine (currently in development)

Overview

2CHEP 2018 Kevin Pedro (FNAL)

Geant4 10.0p02
(similar in other versions)

~60%

~15%

~10%

Geometry/Field
EM Physics

Had.
Physics

CMS user actions other

The CMS Detector

3CHEP 2018 Kevin Pedro (FNAL)

“Phase 0”

The CMS Detector

4CHEP 2018 Kevin Pedro (FNAL)

127M

Phase 1
Upgrade

The CMS Detector

5CHEP 2018 Kevin Pedro (FNAL)

127M

Phase 1
Upgrade

1947M

Phase 2
Upgrade

The CMS Detector

6CHEP 2018 Kevin Pedro (FNAL)
15k

Phase 1
Upgrade

The CMS Detector

7CHEP 2018 Kevin Pedro (FNAL)
15k

Phase 1
Upgrade

High Granularity
Calorimeter (HGCal)
Silicon, scintillator
~6M channels

Phase 2
Upgrade

• CMS Phase 0 and Phase 1 simulation
geometries have 2.1 million elements

• Phase 2 geometry has 21.9 million
elements: 10×(Phase 1)

• This translates to an increase in CPU
time for simulation

Challenges of Phase 2

8CHEP 2018 Kevin Pedro (FNAL)

• Simulate more events to keep up with
HL-LHC data volumes: 10×(Phase1)

• May also need to improve accuracy of
physics lists to simulate HGCal

• Reconstruction will take longer due to high
pileup and granular detectors

 Need more events, more accuracy, in more
complicated geometry… w/ relatively
smaller fraction of total CPU usage

• Static library: avoid calls to procedure linkage table (PLT) for dynamic
loading of libraries

• Production cuts: 0.01mm (pixel), 0.1mm (strip tracker), 1 mm
(ECAL/HCAL), 0.002 mm (muon systems), 1 cm (support structure)

• Tracking cut: 2 MeV (within beampipe) → avoid looping electrons

• Time cut: 500 ns

• Shower library: use pre-generated showers in forward region
(HF, ZDC, Castor)

• Russian roulette: discard N-1 neutrons < 10 MeV or gammas < 5 MeV (in
calorimeters), retain Nth particle and assign it a weight of N

• FTFP_BERT_EMM: modified physics list, simplified multiple scattering
model for most regions (default used for HCAL, HGCal)

 When all optimizations applied together, CMS achieves ~3–5× speedup!

Existing Improvements

9CHEP 2018 Kevin Pedro (FNAL)

• From HEP Software Foundation
Community White Paper
o CMS Phase 0 detector,

Geant4 10.2
• HF shower library, Russian

Roulette have largest impacts
• Cumulative effects: with all

improvements, simulation is
4.7× (3.4×) faster for MinBias
(ttbar)

• CMS simulation takes 4.3
sec†/event (24.6 sec†/event) for
MinBias (ttbar)

†1 sec = 11 HS06 for test machine

Results of Existing Improvements

10CHEP 2018 Kevin Pedro (FNAL)

Relative CPU usage
Configuration MinBias ttbar
No optimizations 1.00 1.00
Static library 0.95 0.93
Production cuts 0.93 0.97
Tracking cut 0.69 0.88
Time cut 0.95 0.97
Shower library 0.60 0.74
Russian roulette 0.75 0.71
FTFP_BERT_EMM 0.87 0.83
All optimizations 0.21 0.29

Multithreading

11CHEP 2018 Kevin Pedro (FNAL)

• Geant4 includes event-level
multithreading

• Nearly perfect scaling with physical
cores, further 30% gain from
hyperthreading

• Memory reduced by factor of 10
(vs. multiprocessing approach)

• CMSSW framework supports
multithreading

• Similar gains in throughput observed,
memory usage remains under 2GB

 More efficient use of grid resources
(included in CMS production releases)

Sp
ee

du
p

Num Workers

57 physical cores

VecGeom: new library for detector geometry

• Supports vectorization and new architectures

• Code rewritten to be more modern and efficient (vs. Geant4, ROOT, USolids)

• Can be used in scalar mode with Geant4

• CMS observes 7–13% speedup with similar memory usage

→ Just from code improvements, no vectorization!

 Included in latest CMS production releases

o First mainstream use of vectorized library by experiment

New Improvements: Geometry

12CHEP 2018 Kevin Pedro (FNAL)

Relative CPU usage
Geometry library MinBias ttbar
Native 1.00 1.00
VecGeom 0.87 0.93

• Faster stepper (G4DormandPrince745) for tracking in magnetic field

o Also a more robust algorithm

• Smart tracking: energy-dependent propagation through EM fields

• CMS observes 8–10% speedup with these optimizations (preliminary)

o Enabled by migration to latest Geant4 version 10.4

New Improvements: Magnetic Field

13CHEP 2018 Kevin Pedro (FNAL)

(tested w/ gcc 7.0 and 16 threads)

Relative CPU usage
Stepper MinBias ttbar
G4ClassicalRK4 1.00 1.00
G4DormandPrince745 0.93 0.98
G4DormandPrince745
+ smart tracking

0.92 0.90

A. Gheata

• CMS has already achieved significant speedups in Geant4 and enabled event-
level multithreading for more efficient use of resources

• However, even this will not suffice for the demands of Phase 2

• Enter GeantV: Vectorized Transport Engine

o Track-level parallelism: process multiple
events simultaneously

o Exploit single instruction, multiple data
(SIMD) vectorization

o Group similar tracks into basket (based
on particle type, geometry/material)

o Send entire basket to algorithm:
process particles in parallel

Potential Improvements: GeantV

14CHEP 2018 Kevin Pedro (FNAL)

https://indico.cern.ch/event/567550/contributions/2627125/

• Started with integration into toy-mt-framework → included in alpha release

o Used for CMS multithreading R&D (Intel Thread Building Blocks)

 Now have a working example compatible w/ CMSSW development release

• Run GeantV in “external loop” mode using CMSSW ExternalWork feature:

o Asynchronous task-based processing

 Co-development approach: test consistency of threading models, interfaces

o Provide feedback to prevent divergence between CMS and GeantV

Early Testing of GeantV in CMSSW

15CHEP 2018 Kevin Pedro (FNAL)

External
processing

CMSSW
module acquire()

GeantV

produce()

 Generate events in CMSSW framework, convert HepMC to GeantV format

 Build CMSSW geometry natively and pass to GeantV engine

• Using constant magnetic field, limited EM-only physics list

• Sensitive detectors and scoring not yet adapted to new interfaces

• Production cuts also not yet included

 First integration of GeantV into experimental software framework

o Run with elements specified above

o Integration with downstream steps (e.g. digitization):
longer timescale, requires more development for thread-safe scoring

• CMS will test GeantV beta release, targeting demonstration of speedup

o Community decision to support GeantV engine as part of Geant4 on
timescale of HL-LHC

Elements of GeantV Integration

16CHEP 2018 Kevin Pedro (FNAL)

• CMS has substantially reduced CPU usage of Geant4 full simulation

o ~3–5× speedup using various technical improvements and physics-
preserving approximations

o Continue to find ~10% improvements, e.g. from VecGeom and magnetic
field stepper/tracking optimizations

• HL-LHC and Phase 2 upgrades bring significant challenges:

 Need more events, more accuracy, in more complicated geometry…
w/ relatively smaller fraction of total CPU usage

• GeantV is one promising approach to speed up full simulation even further

o Track-level parallelism (rather than event-level), vectorized components

o Alpha release is available, beta release planned for 2019

 Successful early integration in CMS software framework!

o Aim for 2–5× speedup with final version

Conclusions

17CHEP 2018 Kevin Pedro (FNAL)

https://gitlab.cern.ch/GeantV/geant/tags/alpha

• Results and R&D presented here are the products of years of work by many
scientists, developers, etc. – a (multi-) team effort!

• Thanks to:
o Geant4 Collaboration
o GeantV R&D Team
o CMS Simulation Group
o CMS Core Software Group
o HEP Software Foundation
o Support from Intel, Fermilab, and CERN OpenLab

Acknowledgements

18CHEP 2018 Kevin Pedro (FNAL)

• M. Hildreth et al., “CMS Full Simulation for Run-2”, J. Phys. Conf. Ser. 664
(2015) 072022, doi:10.1088/1742-6596/664/7/072022.

• HEP Software Foundation, “A Roadmap for HEP Software and Computing
R&D for the 2020s”, HSF-CWP-2017-01, arxiv:1712.06982, December 2017.

• HEP Software Foundation, “Detector Simulation White Paper”, HSF-CWP-
2017-07, arxiv:1803.04165, October 2017.

• D. Elvira et al., “CMS Simulation in the HL-LHC Era”, HSF-CWP-011,
January 2017.

• D. Elvira, “VecGeom in CMS, Mu2e, Muon g-2”. Joint WLCG & HSF
Workshop, Napoli, March 2018.

• J. Apostolakis et al., “Towards a high performance geometry library for
particle-detector simulations”, J. Phys. Conf. Ser. 608 (2015) 012023,
doi:10.1088/1742-6596/608/1/012023.

• K. Pedro, “Tests of GeantV in CMS Software Framework”. Joint WLCG &
HSF Workshop, Napoli, March 2018.

References

19CHEP 2018 Kevin Pedro (FNAL)

http://dx.doi.org/10.1088/1742-6596/664/7/072022
http://hepsoftwarefoundation.org/activities/cwp.html
https://arxiv.org/abs/1712.06982
http://hepsoftwarefoundation.org/activities/cwp.html
https://arxiv.org/abs/1803.04165
https://hepsoftwarefoundation.org/cwp-whitepapers.html
https://indico.cern.ch/event/658060/contributions/2890736/
http://dx.doi.org/10.1088/1742-6596/608/1/012023
https://indico.cern.ch/event/658060/contributions/2897532/

• CMSSW (GitHub/cms-sw)
o CMS Offline Software, ~6 million LOC

• VecCore (GitHub/root-project)
o SIMD abstraction library
o Supports backends: Vc, UME::SIMD, CUDA

• VecMath (GitHub/root-project)
o Vectorized math utilities
o Built on top of VecCore

• VecGeom (CERN/GitLab)
o Vectorized geometry and navigation, multi-particle interface

• GeantV (CERN/GitLab)
o Alpha release now available!
o cmsToyGV example

• toy-mt-framework (GitHub/Dr15Jones)
o Original toy framework for CMS multithreading development

• install-geant (GitHub/kpedro88), SimGVCore (GitHub/kpedro88)
o Test repositories to install and integrate GeantV in CMSSW

Repositories

20CHEP 2018 Kevin Pedro (FNAL)

https://github.com/cms-sw/cmssw/
https://github.com/root-project/veccore
https://github.com/root-project/vecmath
https://gitlab.cern.ch/VecGeom/VecGeom
https://gitlab.cern.ch/GeantV/geant
https://gitlab.cern.ch/GeantV/geant/tags/alpha
https://gitlab.cern.ch/GeantV/geant/tree/master/examples/physics/cmsToyGV
https://github.com/Dr15Jones/toy-mt-framework
https://github.com/kpedro88/install-geant/
https://github.com/kpedro88/SimGVCore

Backup

• Phase 1 upgrades began during Run 2 and will be in operation through the
end of Run 3 (installation finishes during Long Shutdown 2)

• Phase 2 upgrades will be in operation during Runs 4, 5 (installation during
Long Shutdown 3)

CMS & LHC Upgrade Schedule

22CHEP 2018 Kevin Pedro (FNAL)

Phase 0 Phase 1 Phase 1

We are here

• Machine: olhswep16.cern.ch (CERN OpenLab)

• Single-threaded runs

• Compiler: gcc 6.3.0

• Geant4: version 10.2

• FTFP_BERT physics list

• Pythia event generation: √s = 13 TeV, 300 events, |η| < 5.5
(minimum bias, ttbar)

• Particle gun event generation: 50 GeV electrons, muons, pions
flat distribution in η = [–0.8, 0.8], η = [2.0, 2.7], φ = [0, 2π]

• Geometry: 2016 detector version (default)

Simulation Test Details

23CHEP 2018 Kevin Pedro (FNAL)

Multithreading

24CHEP 2018 Kevin Pedro (FNAL)

← Standalone test

CMSSW framework ↓

Setup:

• TBB controls running modules

• Concurrent processing of multiple events

• Separate helper thread to control external

• Can wait until enough work is buffered
before running external process

External Work in CMSSW (1)

25CHEP 2018 Kevin Pedro (FNAL)

Acquire:

• Module acquire() method called

• Pulls data from event

• Copies data to buffer

• Buffer includes callback to start next
phase of module running

External Work in CMSSW (2)

26CHEP 2018 Kevin Pedro (FNAL)

Work starts:

• External process runs

• Data pulled from buffer

• Next waiting modules can run
(concurrently)

External Work in CMSSW (3)

27CHEP 2018 Kevin Pedro (FNAL)

Work finishes:

• Results copied to buffer

• Callback puts module back into queue

External Work in CMSSW (4)

28CHEP 2018 Kevin Pedro (FNAL)

Produce:

• Module produce() method is called

• Pulls results from buffer

• Data used to create objects to put into
event

External Work in CMSSW (5)

29CHEP 2018 Kevin Pedro (FNAL)

	Current and Future Performance�of the CMS Simulation
	Overview
	The CMS Detector
	The CMS Detector
	The CMS Detector
	The CMS Detector
	The CMS Detector
	Challenges of Phase 2
	Existing Improvements
	Results of Existing Improvements
	Multithreading
	New Improvements: Geometry
	New Improvements: Magnetic Field
	Potential Improvements: GeantV
	Early Testing of GeantV in CMSSW
	Elements of GeantV Integration
	Conclusions
	Acknowledgements
	References
	Repositories
	Backup
	CMS & LHC Upgrade Schedule
	Simulation Test Details
	Multithreading
	External Work in CMSSW (1)
	External Work in CMSSW (2)
	External Work in CMSSW (3)
	External Work in CMSSW (4)
	External Work in CMSSW (5)

