

Sharing server nodes for storage and compute Batch on EOS Extra Resources

CHEP 2018, SOFIA, July 10

BEER Contributors

- □ IT-CM
 - Tim Bell, Ben Jones, Domenico Giordano,
 - Gavin McCance, Jaroslava Schovancova, Havard Tollefsen
- □ IT-ST
 - Dirk Duellmann, Massimo Lamanna, Herve Rousseau
- IT-DI
 - Markus Schulz, Andrea Sciaba, Andrea Valassi, David Smith
- Petersburg Nuclear Physics Institute
 - Andrey Kirianov
- □ ATLAS for using the resource

Background

- EOS is CERN's large storage management system
 - https://eos.web.cern.ch/
 - Frequent reports at CHEP ©
- The hardware architecture follows CERN's commodity paradigm
 - Disk servers are based on standard servers with shelfs of disks

Motivation

- Observation of relative low average loads on our storage systems
 - Sometimes I/O bound (internally and network)
 - Most nodes are not CPU saturated even when they are I/O saturated
- □ Average usage per server node (snapshot):
 - Read: 35MB/sec 67MB/sec, write: <10MB/sec</p>
 - IOPS: read 290-500 Hz, write: 28Hz
- □ CERN has a relatively large storage system, 1339 nodes with data
 - Several have 40 cores with 3.2 GB/core
- Questions:
 - Can we make use of some of these cores?
 - What value does this correspond to?
 - Proof of concept tests where done by Andrey using some older nodes.

Recent Loads (spring 2018)

- ALICE EOS cluster average CPU utilization is <=20% left plot
- ALICE EOS disk server CPU utilization is <=20% right plot
 - Some **IOWait**, which can be used by other processes → Significant Potential

First Steps

- Proof of concept tests by Andrey Kiryanov
 - Testbed (puppetized)
 - Small EOS system(s)
 - Client/load-generator cluster
 - Condor based test with computational loads
 - Using Ihc@home
 - Boinc based system
 - Using nice to limit impact on EOS

Test systems

- First system
 - Disk servers with 1Gb interface
 - Local IO generator also used
- Second system
 - Disk server with 10Gb interface

Tests with more recent hardware

- New disk server with decent hardware
 - Dual E5-2630 v3 @ 2.40GHz (32 vcores with HT)
 - 64 GB RAM
 - 48 disks 6TB each + 2 SSD (OS + swap)
 - 10 Gbps network

Running with no payload

Proof

Almost identical results

Running with compute payload

Proo

What did we learn?

- With a simple setup Storage and Computing can be run without much interference
 - HTCondor + *nice*
- □ For typical I/O loads in production we can expect to use >80% of the CPU for non storage tasks
 - Worst case would be about 50%

□ Interesting...... But....

How to turn this into production?

- Needs to be deployable
 - Configuration Management challenge
 - Two services on the same node
 - Responsibility split between two teams
- EOS service must not be compromised
 - Resources (CPUs, memory)
 - Halting the computational tasks on demand
- Monitoring

A model emerged

- "Partition" the resources
 - To guarantee that storage performance is not crippled
 - To provide accountable resources (not like lhc@home)
 - Control groups (*Cgroups*)
 - Run Condor jobs in Containers
 - Using Cgroups to limit resource usage
 - One puppet configuration for the node

- Queues for suitable workloads
- BEER Pilot to explore this approach
 - Participation from storage and batch team
 - JIRA for ticketing

High Throughput Computing

Condor + Containers

Testbed #3

- □ Three disk servers: each
 - 48 6TB HDD (1 HDD apparently failed on one server)
 - 2 x E5-2630 v3 (haswell; 2 x 8 physical cores => 32 w/ SMT)
 - 2 x 800GB SSD (Intel DC S3510 series; 0.3 DWPD for 5 yrs)
 - 10Gbit network
- Centos7; EOS 0.3.240 (Aquamarine)
 - Using puppet, hostgroup based on eos hostgroup and using modified eos module and cerncondor module (beer branch)
- Local Disc Setup:
 - 1 ssd set aside for the batch work (including addition of 96GB swap)
 - CVMFS installed
 - cerncondor module used to install and run condor
- □ Changes in the batch environment (possibly amongst others):
 - set memory.memsw.limit_in_bytes and add condor to the cpuset cgroup controller: cpuset.cpus and cpuset.mems
 - (systemd already set mem limit, but no support for memsw or cpuset)

Limits

- Memory limit
 - is set as a parameter in /etc/systemd/system/condor.service and systemd uses the setting when setting up the *cgroup* for the condor service: 48GB
 - But does not limit swap usage
 - Modified condor.service to also set memsw limit (ram + swap) to 96GB
- □ Add condor to another *cgroup* using *cpuset*
 - cpus 2-7,10-15,18-23,26-31
 - leaves 4 physical cores entirely excluded covering both sockets
 - Later only number of cpus has been limited.
- □ Condor configured to offer 24 job slots and 96GB ram
- □ Number of processes has been limited to 8000
- □ **blkio** is used to control the I/O scheduling
 - Blkio.weight == 50
- Network traffic limits can be set via iptables on the docker level, but are currently not used.
- See detailed setup description at the end

Security?

- Data on the node is protected by UNIX ownership
- Separation between users is done by CONDOR
- ☐ In addition jobs are run in containers
 - EOS data disks not visible within container

Load generation

- For load run 10 instances of xrdstress
 - 4 jobs; 20 files; rw; size 1GB +- 256MB on 4 hosts
 - No difference between 3 and 4 hosts → saturation
- Run 3 ATLAS Pile job (8 cores per job)
 - Staging pileup data on node
 - Signal + min bias mixing;
 - Digitisation
 - Trigger simulation
 - Reconstruction
 - Convert ESD to AOD
 - Start jobs with short delay
 - Similar, shorter, job has been added to HammerCloud
 - For generating steady stream of jobs

Test Job:

2000 MC Events, 8 cores

Preproduction

- □ 3 test servers
- Stopped using cpusets, only cpu shares
- 4 nodes from EOS pre-production cluster
- HammerCloud (ATLAS Pile job)
 - Hammercloud submits to Condor, Condor schedules and starts the job
 →like a standard Grid job
 - ATHENA MP (i.e. each job starts 4 processes)
 - About 30 mins runtime (choose a small number of events / job)

BEER on Production Nodes

- □ 70 nodes with 40 cores
- Disk Servers from ATLAS Production
 - Initial loads from ATLAS
 - Later will become part of CERN resources
- Jobs experience so far
 - Production jobs started last week

Plots from monitoring: production

- 32 1-core job slots available per 40 core machine
 - No hard limit on CPU usage; but uses cgroup cpu shares to reduce job priority to EOS service processes
- 70 disc servers involved

Plots from monitoring: production

Next Steps

- More detailed monitoring of the situation
 - Already increased logging on the CONDOR level
 - I/O and network related monitoring also needed
- Study of mixed workloads
 - Different experiments
 - Different processing steps
- □ Scaling UP!

What could be gained for CERN?

precision at best 10 – 20 %, but based on conservative assumptions roughly 10 HEP-SPECs / core

- Near future:
 - Assuming 40|80% of 350 machines can be used:
 - Our measurements show that this is far less than what can be done when the node is fully saturated
 - 350 * 32 * 0.4|0.8 = 4480|8960 cores ~ 44,800|89,600 HEP-SPEC06
 - ~3.8|7.6% of the 2017 T0 pledge
- □ Long term (somewhat optimistic):
 - Assuming 40|80% of 1200 machines:
 - 1200 * 32 * 0.4|0.8 = 15360|30720 cores ~ 153,600|307,200 HEP-SPEC06
 - ~13|26% of the 2017 T0 pledge

Estimated effort

- Activity from Proof of Concept to production readiness took about 2.5 years
- Several people have been involved. All intermittent and at small overall percentages.
 - PoC work about 3 person months over 2 years
 - Planning and coordination of production mode required intense communication
- □ Total effort is difficult to estimate
 - 3PM + 6PM = 9PM ← rough estimate assuming 5%/person
 - Some of the work was foreseen for other reasons
 - HTCondor + containers

