
0

Sharing server nodes for

storage and compute

Batch on EOS Extra Resources

1

CHEP 2018, SOFIA, July 10

BEER Contributors
 IT-CM

 Tim Bell, Ben Jones, Domenico Giordano,

 Gavin McCance, Jaroslava Schovancova, Havard Tollefsen

 IT-ST
 Dirk Duellmann, Massimo Lamanna, Herve Rousseau

 IT-DI
 Markus Schulz, Andrea Sciaba, Andrea Valassi, David Smith

 Petersburg Nuclear Physics Institute
 Andrey Kirianov

 ATLAS for using the resource

2

Background
 EOS is CERN’s large storage management

system

 https://eos.web.cern.ch/

 Frequent reports at CHEP 

 The hardware architecture follows CERN’s
commodity paradigm

 Disk servers are based on standard servers with
shelfs of disks

3

https://eos.web.cern.ch/

Motivation
 Observation of relative low average loads on our storage systems

 Sometimes I/O bound (internally and network)
• Most nodes are not CPU saturated even when they are I/O saturated

 Average usage per server node (snapshot):
 Read: 35MB/sec - 67MB/sec, write: <10MB/sec

 IOPS: read 290-500 Hz, write: 28Hz

 CERN has a relatively large storage system, 1339 nodes with data
 Several have 40 cores with 3.2 GB/core

 Questions:
 Can we make use of some of these cores?

 What value does this correspond to?

 Proof of concept tests where done by Andrey using some older nodes.

4

Recent Loads (spring 2018)
• ALICE EOS cluster average CPU utilization is <=20% – left plot

• ALICE EOS disk server CPU utilization is <=20% – right plot

• Some IOWait, which can be used by other processes  Significant Potential

5

Average: System+User+IRQ < 20% IdleIdle
Busy: System+User+IRQ < 20%

NodeCluster

250 Mb/s
59 Gb/s

First Steps

 Proof of concept tests by Andrey Kiryanov

 Testbed (puppetized)

• Small EOS system(s)

• Client/load-generator cluster

• Condor based test with computational loads

• Using lhc@home

• Boinc based system

• Using nice to limit impact on EOS

6

Test systems
• First system

• Disk servers with 1Gb interface

• Local IO generator also used

• Second system

• Disk server with 10Gb interface

7

I/O load
generators
(13 hosts)

EOS head
(namespace in memory)

EOS disk server 1
+

Condor (vLHC@Home)

EOS disk server 2
+

Condor (vLHC@Home)

EOS disk server 3
+

Condor (vLHC@Home)

EOS disk server 4
+

Condor (vLHC@Home)

file I/O

1Gbps
22X

22X

22X

22X

161 MB/s read

93 MB/s write

EOS only

156 MB/s read

93 MB/s write
EOS +

vLHC@home

7

I/O load

generators

(13 hosts)

EOS disk server 1

+

Condor

(vLHC@Home)

4X

EOS head
(namespace in memory)

Tests with more recent hardware

8

• New disk server with decent hardware

– Dual E5-2630 v3 @ 2.40GHz (32 vcores with HT)

– 64 GB RAM

– 48 disks 6TB each + 2 SSD (OS + swap)

– 10 Gbps network

I/O load
generators

(7 hosts)

EOS head
(namespace in memory)

EOS disk server
+

Condor (vLHC@Home)
48X

Running with no payload

9

>80% of CPU resources are idle

Running with compute payload

10

>80% of CPU resources used for compute payload

Same rates as before

A
lm

o
s
t

id
e
n
ti
c
a
l
re

s
u
lt
s

What did we learn?
 With a simple setup Storage and Computing

can be run without much interference
 HTCondor + nice

 For typical I/O loads in production we can
expect to use >80% of the CPU for non storage
tasks
 Worst case would be about 50%

 Interesting....... But....
11

How to turn this into production?
 Needs to be deployable

 Configuration Management challenge

• Two services on the same node
• Responsibility split between two teams

 EOS service must not be compromised

 Resources (CPUs, memory)

 Halting the computational tasks on demand

 Monitoring

12

A model emerged
 “Partition” the resources

 To guarantee that storage performance is not crippled

 To provide accountable resources (not like lhc@home)

 Control groups (Cgroups)

 Run Condor jobs in Containers
• Using Cgroups to limit resource usage

 One puppet configuration for the node

 Integrate resources in CERN’s Condor batch system
 Queues for suitable workloads

 BEER Pilot to explore this approach
 Participation from storage and batch team

 JIRA for ticketing

13

Condor + Containers

14

EOS

Condor

cgroups

Monitored by:
cadvisor/collectd

job job

job

job

container

cores

memory

Local disk

Cores reserved for EOS Cores integrated in Condor running
jobs at low priority, memory and
scratch space restricted by cgroups,

Testbed #3
 Three disk servers: each

 48 6TB HDD (1 HDD apparently failed on one server)

 2 x E5-2630 v3 (haswell; 2 x 8 physical cores => 32 w/ SMT)

 2 x 800GB SSD (Intel DC S3510 series; 0.3 DWPD for 5 yrs)

 10Gbit network

 Centos7; EOS 0.3.240 (Aquamarine)
 Using puppet, hostgroup based on eos hostgroup and using modified eos module and

cerncondor module (beer branch)

 Local Disc Setup:
 1 ssd set aside for the batch work (including addition of 96GB swap)

 CVMFS installed

 cerncondor module used to install and run condor

 Changes in the batch environment (possibly amongst others):
 set memory.memsw.limit_in_bytes and add condor to the cpuset cgroup controller:

cpuset.cpus and cpuset.mems

 (systemd already set mem limit, but no support for memsw or cpuset)

15

Limits
 Memory limit

 is set as a parameter in /etc/systemd/system/condor.service and systemd uses the
setting when setting up the cgroup for the condor service: 48GB

 But does not limit swap usage

 Modified condor.service to also set memsw limit (ram + swap) to 96GB

 Add condor to another cgroup using cpuset
• cpus 2-7,10-15,18-23,26-31

• leaves 4 physical cores entirely excluded covering both sockets

• Later only number of cpus has been limited.

 Condor configured to offer 24 job slots and 96GB ram

 Number of processes has been limited to 8000

 blkio is used to control the I/O scheduling
 Blkio.weight == 50

 Network traffic limits can be set via iptables on the docker level, but are currently
not used.

 See detailed setup description at the end

16

Security?

 Data on the node is protected by UNIX

ownership

 Separation between users is done by

CONDOR

 In addition jobs are run in containers

 EOS data disks not visible within container

17

Load generation
 For load run 10 instances of xrdstress

 4 jobs; 20 files; rw; size 1GB +- 256MB on 4 hosts

 No difference between 3 and 4 hosts  saturation

 Run 3 ATLAS Pile job (8 cores per job)
 Staging pileup data on node

 Signal + min bias mixing;

 Digitisation

 Trigger simulation

 Reconstruction

 Convert ESD to AOD

 Start jobs with short delay

 Similar, shorter, job has been added to HammerCloud
• For generating steady stream of jobs

18

Test Job:
2000 MC Events, 8 cores

19

Digitisation & Pileup
Trigger

Verification
Reconstruction Raw2ESD ESD2AOD

Merge

Verify

Pileup

30GB

MC-

Geant

1.5GB

MC

RAW

RDO

4.6GB

MC

RAW

RDO

4.6GB

TRG

RAW

RDO

5.2 GB

TRG

RAW

RDO

5.2 GB

ESD

6.0 GB

ESD

6.0 GB

AOD

700MB

AOD

680 MB

AOD

700MB

20

I/O ON

job OFF

I/O ON

job ON

I/O OFF

job ON

Out = load + replication

No difference in I/O performance!

Phase 3Phase 2Phase 1

Preproduction
 3 test servers

 Stopped using cpusets, only cpu
shares

 4 nodes from EOS pre-production
cluster

 HammerCloud (ATLAS Pile job)
 Hammercloud submits to Condor,

Condor schedules and starts the job
like a standard Grid job

 ATHENA MP (i.e. each job starts 4
processes)

• About 30 mins runtime (choose a
small number of events / job)

21

BEER on Production Nodes

 70 nodes with 40 cores

 Disk Servers from ATLAS Production

 Initial loads from ATLAS

• Later will become part of CERN resources

 Jobs experience so far

 Production jobs started last week

22

Plots from monitoring: production

23

• 32 1-core job slots available per 40 core machine

• No hard limit on CPU usage; but uses cgroup

cpu shares to reduce job priority to EOS

service processes

• 70 disc servers involved

Plots from monitoring: production

24

Next Steps

 More detailed monitoring of the situation

 Already increased logging on the CONDOR level

 I/O and network related monitoring also needed

 Study of mixed workloads

 Different experiments

 Different processing steps

 Scaling UP!

25

What could be gained for CERN?
precision at best 10 – 20 %, but based on conservative assumptions

roughly 10 HEP-SPECs / core

 Near future:
 Assuming 40|80% of 350 machines can be used:

• Our measurements show that this is far less than what can be
done when the node is fully saturated

 350 * 32 * 0.4|0.8 = 4480|8960 cores ~ 44,800|89,600 HEP-
SPEC06

 ~3.8|7.6% of the 2017 T0 pledge

 Long term (somewhat optimistic):
 Assuming 40|80% of 1200 machines:

 1200 * 32 * 0.4|0.8 = 15360|30720 cores ~ 153,600|307,200
HEP-SPEC06

 ~13|26% of the 2017 T0 pledge
26

Estimated effort
 Activity from Proof of Concept to production readiness

took about 2.5 years

 Several people have been involved. All intermittent and at
small overall percentages.
 PoC work about 3 person months over 2 years

 Planning and coordination of production mode required intense
communication

 Total effort is difficult to estimate
 3PM + 6PM = 9PM  rough estimate assuming 5%/person

 Some of the work was foreseen for other reasons
• HTCondor + containers

28

