MONITORING SYSTEM OF THE AMS
SCIENCE OPERATION CENTRE

B. SHAN1 ON BEHALF OF AMS COLLABORATION
1BEIHANG UNIVERSITY, CHINA
CHEP 2018, SOFIA
AMS EXPERIMENT

• The Alpha Magnetic Spectrometer (AMS) is a high energy physics experiment on board the International Space Station (ISS), featured:
 • Geometrical acceptance: 0.5 m2•sr
 • Number of Read-out Channels: \approx200K
 • Main payload of Space Shuttle Endeavour’s last flight (May 16, 2011)
 • Installed on ISS on May 19, 2011
 • 7x24 running
 • Up to now, over 122 billion events collected
 • Max. event rate: 2KHz
AMS DATA FLOW

• Data transferred via relay satellites to Marshall Space Flight Center, then to CERN, nearly real-time, in form of one-minute *frames*

• **Preproduction**: Frames \rightarrow runs *(RAW)*: 1 run = $\frac{1}{4}$ orbit (~23 minutes)

• **Standard Production**
 – Runs 7x24 on freshly arrived data
 – Initial data validation and indexing
 – Produces Data Summary Files and Event Tags *(ROOT)* for fast events selection
 – Usually be available within 2 hours after flight data arriving
 – Used to produce various calibrations for the second production as well as quick performance evaluation
SCIENCE OPERATION CENTER (SOC)

• Processing of the AMS science data for detector evaluation and physics analysis
 • Data production
 • Monte-Carlo simulation
• Maintaining local production farm
 • 20 hosts, 302 cores
 • 400 TB storage
• Operations on the services/resources provided by CERN IT
 • Batch (HTCondor & LSF), EOS, CASTOR, AFS, CVMFS, ELOG, PDB-R, etc.

Monitoring (all of the above) is important and challenging!
CHALLENGES OF SOC MONITORING

- Data taking and processing is 7x24 running
 - For detector performance evaluation
- Long data transmission path
- Widely distributed compute facilities
 - Europe: CERN, RWTH, CNAF, IN2P3, ...
 - Asia: SEU, Acad. Scinica, ...
 - America: NERSC, ALCF, ...
- Various service providers
WHAT WE ALREADY HAVE

• Frame monitor
 • delay of frames
• Production monitor
 • standard production jobs
• Data files list
 • Summary of raw and ROOT files
• NetMonitor
 • Hardware/storage monitoring of local production farm

We need more centralized monitoring
WHAT CERN IT PROVIDES

• MONIT Infrastructure [1]

ROADMAP – CERN IT SERVICES/METRICS

• Sources
 • Taken care of service providers (EOS/batch/FTS/... teams)

• Transport, processing, and storage
 • Taken care by MONIT

• Access
 • Modify dashboards from service providers to concentrate on the services/hosts which affect us
 • Create relevant Alerts with notifications
ROADMAP – OUR SERVICES/METRICS

• Sources
 • Modify our existing monitoring tools to send “Metrics” to InfluxDB
 • Use Collectd to gather the standard hardware/storage data of hosts
 • Log files to HDFS
 • And more...
 • Transport, processing, and storage
 • Taken care by MONIT

• Access
 • Build dashboards
 • With Alerts
IMPLEMENTATION

• Request a new organization in monit-grafana
• Request the access right for the data sources we concern
 • monit_idb_eos, monit_idb_tape, monit_idb_transfers, monit_idb_collectd_XXX
• Request to create our own InfluxDB data source
 • monit_idb_amsassoc
 • Modify/write scripts/programs to send data to the data source
• Modify/write dashboards for data access
EXAMPLE – EOS QUOTA

• Digging data from monit_idb_eos
• Singlestat to show the percentage of byte usage
• Graph to show the data and history of:
 • used_bytes and quota_bytes
 • used_files and quota_files
• Alert to warn when approaching the quotas
EXAMPLE – HOST LOAD

- Digging data from monit_idb_collectd_load: load
- Graph to show the data and history of the load of specific host(s)
EXAMPLE – STANDARD PRODUCTION DELAYS

- Data format and structure
 - The last frame data arriving time
 - The last frame data collecting time
 - The last raw file validation time
 - The last ROOT file validation time
 - The latest reconstructed run collecting time
- A script running every 15 minutes to get the above data and post to http://monit-metrics:10012/
EXAMPLE – STANDARD PRODUCTION DELAYS (CONT.)

SELECT last("frame_arr_delay") AS "Frame_arrival" FROM "metric" WHERE $timeFilter GROUP BY time($__interval) fill(none)

SELECT last("frame_delay") AS "Frame" FROM "metric" WHERE $timeFilter GROUP BY time($__interval) fill(none)

SELECT last("raw_delay") AS "RAW" FROM "metric" WHERE $timeFilter GROUP BY time($__interval) fill(none)

SELECT last("root_delay") AS "ROOT" FROM "metric" WHERE $timeFilter GROUP BY time($__interval) fill(none)

SELECT last("fresh_run_delay") AS "FRESHRUN" FROM "metric" WHERE $timeFilter GROUP BY time($__interval) fill(none)
FURTHER WORKS

• Add more data sources:
 • Hardware: CPU/memory/disk/…
 • Batch service: under negotiation
 • MC production monitoring
 • Data from remote computing centers
• Add more alerts and connect to our FE
• Tune the dashboard structure
SUMMARY

• 7x24 data taking and processing brings more challenges for monitoring.

• SOC monitoring tools have been modified for the integration with MONIT infrastructure.

• Metrics Source provides a flexible way for our monitoring data ingestion.

• Grafana dashboard is used for visualization of the monitoring data from our own monitoring tools as well as from the CERN IT public services (EOS, Condor, FTS, etc.)
THANKS TO:

• Alberto Aimar, Simone Brundu, Pedro Andrade (monitoring)

• Herve Rousseau (EOS)

• Ben Jones (batch)

• Xavier Espinal Curull (IT contact)