
Robust Linux Binaries
How to use Portage to provide a solid base stack for HEP

G. Amadio

https://xkcd.com/1987

https://xkcd.com/1987

3

Why do we fall into this kind of situation?

● We want software that’s not part of the system

● Use pip, conda, homebrew, etc to get it somewhere

● Not compiled with same compiler → incompatible ABI

● Often requires setting LD_LIBRARY_PATH and/or PYTHONPATH

● Problems if a package is both in the system and in add-ons

● Updates to the system do not take add-ons into account

Classic example: ROOT, Python, and Anaconda
● User has Anaconda installation with Python, wants ROOT

● User then tries to build ROOT with system compiler and link with
Python from Anaconda installation

● libPyROOT.so has to link against system’s libstdc++.so and
anaconda’s libpython2.7.so

● Problem: libpython2.7.so from Anaconda is not guaranteed to be
ABI-compatible with system libraries

● Solution: install GCC from anaconda that was used to build Python
and build ROOT with that compiler instead

4

Why LD_LIBRARY_PATH should be avoided

● LD_LIBRARY_PATH is commonly used to add directories to the linker’s search path

● Problem: LD_LIBRARY_PATH takes precedence, overrides important system libraries

○ See e.g. https://sft.its.cern.ch/jira/browse/SPI-1083

● Solution: use a wrapper script or even better, don’t use LD_LIBRARY_PATH

$ ssh lxplus7
$ lsb_release -d
Description: CentOS Linux release 7.5.1804 (Core)
$ source /cvmfs/sft.cern.ch/lcg/views/LCG_latest/x86_64-centos7-gcc7-opt/setup.sh
$ ldd /usr/bin/git

linux-vdso.so.1 => (0x00007ffdb55b3000)
libpcre.so.1 => /cvmfs/sft.cern.ch/lcg/views/LCG_latest/x86_64-centos7-gcc7-opt/lib/libpcre.so.1
libz.so.1 => /cvmfs/sft.cern.ch/lcg/views/LCG_latest/x86_64-centos7-gcc7-opt/lib/libz.so.1
libpthread.so.0 => /lib64/libpthread.so.0
libc.so.6 => /lib64/libc.so.6
/lib64/ld-linux-x86-64.so.2

5

https://sft.its.cern.ch/jira/browse/SPI-1083

Executable and Linking Format (ELF)

$ readelf -d $(which bash)

Dynamic section at offset 0xdde08 contains 26 entries:
 Tag Type Name/Value
 0x0000000000000001 (NEEDED) Shared library: [libtinfo.so.5]
 0x0000000000000001 (NEEDED) Shared library: [libdl.so.2]
 0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
 0x000000000000001d (RUNPATH) Library runpath: [/opt/bash/lib64]

6

ELF header

program header

.text section

.data section

.bss section

.dynamic

.rel*

.symtab

.debug

section header table

bash

https://binvis.io

● Linker looks at dynamic section for some tags

● Contains needed libraries, but can contain
extra paths where to look for libraries

● DT_RPATH and DT_RUNPATH

● DT_RPATH comes before LD_LIBRARY_PATH

● DT_RUNPATH comes after

● Both can be changed when installing

How to get rid of LD_LIBRARY_PATH

● Add -Wl,-rpath=${PREFIX} to your LDFLAGS when compiling

● Use --enable-new-dtags (RUNPATH) or --disable-new-dtags
(RPATH) to choose which kind of tag you want

● Better: link with relative RUNPATH with ${ORIGIN} and ${LIB}

● Not a panacea: if your software depends on environment
variables, it will fail when moved to a different location

● Need help from package manager to support relocation
7

Platform
Combinatorics

Currently, HEP softare stacks rely
on libraries installed on the base
system and on the HEPOS libs
meta-package.

Since each Linux distribution uses
its own version of libc, binutils,
GCC, and includes a different set of
system packages, the HEPOS libs
meta-package contains different
packages for different distros.

For that reason, higher layers must
also be adjusted to provide what’s
missing in the base layers.

Building everything from the
ground up would make it possible
to reduce platform combinatorics.

LCG Release

Base System

Experiment
Software Stack

HEPOS Libs

$ cd /cvmfs/sft.cern.ch/lcg/views
$ ls LCG_latest
x86_64-centos7-clang60-opt
x86_64-centos7-gcc62-dbg
x86_64-centos7-gcc62-opt
x86_64-centos7-gcc7-dbg
x86_64-centos7-gcc7-opt
x86_64-slc6-clang60-opt
x86_64-slc6-gcc62-dbg
x86_64-slc6-gcc62-opt
x86_64-slc6-gcc7-dbg
x86_64-slc6-gcc7-opt
x86_64-ubuntu1604-gcc54-dbg
x86_64-ubuntu1604-gcc54-opt

8

Platform
Combinatorics

LCG Release

Base System

Experiment
Software Stack

HEPOS Libs

$ cd /cvmfs/sft.cern.ch/lcg/views
$ ls LCG_latest
x86_64-centos7-clang60-opt
x86_64-centos7-gcc62-dbg
x86_64-centos7-gcc62-opt
x86_64-centos7-gcc7-dbg
x86_64-centos7-gcc7-opt
x86_64-slc6-clang60-opt
x86_64-slc6-gcc62-dbg
x86_64-slc6-gcc62-opt
x86_64-slc6-gcc7-dbg
x86_64-slc6-gcc7-opt
x86_64-ubuntu1604-gcc54-dbg
x86_64-ubuntu1604-gcc54-opt

9

Currently, HEP softare stacks rely
on libraries installed on the base
system and on the HEPOS libs
meta-package.

Since each Linux distribution uses
its own version of libc, binutils,
GCC, and includes a different set of
system packages, the HEPOS libs
meta-package contains different
packages for different distros.

For that reason, higher layers must
also be adjusted to provide what’s
missing in the base layers.

Building everything from the
ground up would make it possible
to reduce platform combinatorics.

Platform
Combinatorics

Experiment
Software Stack

Kernel + libc

LCG Release

Experiment
Software Stack

$ ls LCG_latest
x86_64-linux
x86_64-macos-10.12
x86_64-macos-10.13

Including HEPOS libs and
other packages picked up
from the system into the
LCG release would allow
to reduce the number of
platforms, since the Linux
kernel promises to never
break userspace APIs.

Unfortunately, for macOS
(Darwin + Apple libc),
breakage is common
between releases, and
some distros have really
old glibc.

10

LCG Release

Base System

HEPOS Libs

Currently, HEP softare stacks rely
on libraries installed on the base
system and on the HEPOS libs
meta-package.

Since each Linux distribution uses
its own version of libc, binutils,
GCC, and includes a different set of
system packages, the HEPOS libs
meta-package contains different
packages for different distros.

For that reason, higher layers must
also be adjusted to provide what’s
missing in the base layers.

Building everything from the
ground up would make it possible
to reduce platform combinatorics.

Platform
Combinatorics

Experiment
Software Stack

Kernel

LCG Release

Experiment
Software Stack

Kernel + libc

LCG Release

Experiment
Software Stack

11

LCG Release

Base System

HEPOS Libs

Currently, HEP softare stacks rely
on libraries installed on the base
system and on the HEPOS libs
meta-package.

Since each Linux distribution uses
its own version of libc, binutils,
GCC, and includes a different set of
system packages, the HEPOS libs
meta-package contains different
packages for different distros.

For that reason, higher layers must
also be adjusted to provide what’s
missing in the base layers.

Building everything from the
ground up would make it possible
to reduce platform combinatorics.

12

Portage Package Manager

● Official package manager of Gentoo Linux

● Written in Python, based on FreeBSD’s ports system

● Packages are special bash shell scripts called ebuilds

● Highly flexible configuration/customization

● Parallel and distributed builds (with distcc)

● Easy to support live packaging from git/svn/hg repos

● Able to install to path other than /usr with Gentoo Prefix

https://www.gentoo.org
https://www.freebsd.org/ports
https://wiki.gentoo.org/wiki/Distcc
https://wiki.gentoo.org/wiki/Project:Prefix

Why use Portage?
● Leverage work done by others (inherit non-HEP packages)

○ Almost 20,000 packages already available: https://packages.gentoo.org

● Support for multiple platforms and hardware achitectures

● Rebuilds packages only when necessary (i.e. ABI changes)

● Allows to cut completely the dependency on “system packages”

● Single stack works on all Linux distributions

● No software requirements for grid sites (optional requirements on kernel only)

● Can use busybox (1MB) as base container image, use everything from CVMFS

13

https://packages.gentoo.org

A Solid Base for LCG Releases with Gentoo Prefix

● Replace “system” + HEPOS libs with a Gentoo Prefix stack

● Build LCG releases on top of it, same way as currently done

● Cut down on number of stacks (1 Linux + 1 Mac + …)

● Can absorb a lot more software into base stack,
let LCG and experiments focus on HEP software

● Overcome limitation of 10 year old operating systems

● For more information, please see presentations below

○ Providing an LTS distro with Gentoo Prefix, FOSDEM 2015

○ Unix? Windows? Gentoo! Native Portability to the max!, FOSDEM 2018
14

Kernel

LCG Release

Experiment
Software Stack

Gentoo Prefix

https://archive.fosdem.org/2015/schedule/event/providing_an_lts_distro_with_gentoo_prefix/
https://fosdem.org/2018/schedule/event/unix_windows_gentoo/

Proof of concept stacks available in CVMFS, try it out
No setup needed! Just run software by typing full path:

Start ROOT 6.14/00 directly from the prefix (requires kernel 3.2+)
$ /cvmfs/sft.cern.ch/lcg/contrib/gentoo/linux/usr/lib64/root/6.14/bin/root

Start ROOT 6.14/00 directly from the prefix (requires kernel 2.6.32+)
$ /cvmfs/sft.cern.ch/lcg/contrib/gentoo/linux/x86_64/usr/lib64/root/6.14/bin/root

Start a Gentoo prefix shell on Linux (requires kernel 3.2+)
$ /cvmfs/sft.cern.ch/lcg/contrib/gentoo/linux/startprefix

Start a Gentoo prefix shell on MacOS (old stack for 10.12, less packages)
$ /cvmfs/sft.cern.ch/lcg/contrib/gentoo/macos/startprefix

Start a busybox Docker container (on a machine with CVMFS installed)
$ docker run -it -v /cvmfs:/cvmfs busybox \
 /cvmfs/sft.cern.ch/lcg/contrib/gentoo/linux/bin/bash -l

15

16

Sample of installed software

Summary

● Ensure consistency with distributed binaries by using the same
compiler to compile your software or use a source distribution

● LD_LIBRARY_PATH can be avoided with RPATH/RUNPATH

● Platform combinatorics can be avoided by building a single
stack from the ground up which depends only on the kernel

● Portage can provide such a stack, but it may be possible with
other tools as well

17

Thank you!

18

