
L. Arrabito1, J. Bregeon1,
P. Langlois2, D. Parello2, G. Revy2

1LUPM CNRS-IN2P3 France
2DALI UPVD-LIRMM France

Preliminary work on optmizing the
Corsika air shower simulaton
program for CTA

CHEP, July 10th 2018, Sofa, Bulgaria
1

CTA project

• The next generation instrument in VHE gamma-ray astronomy
(1400 scientists in 31 countries)
– Cosmic ray origins, High Energy astrophysical phenomena, fundamental

physics and cosmology

• Two arrays of Cherenkov telescopes
– Northern hemisphere (La Palma, Spain): 4 LSTs, 15 MSTs
– Southern hemisphere (Paranal, Chile): 4 LSTs, 25 MSTs, 70 SSTs

• Project schedule
– Construction and deployment: 2019-2025
– Science operations: start in 2022 for 30 years

2

Imaging Atmospheric Cherenkov Telescope

3

Corsika Air shower simulation

• Detailed simulation of showers initiated by high energy cosmic rays
– 30 years old Fortran program of more than 10⁵ lines of code
– Initially developed for the Kaskade experiment (since 1990 at the

Karlsruhe Institute for Technology)
– Widely used by several ‘cosmic rays’ communities (Veritas, Auger,

JEM-EUSO, IceCube…)
– 900 users from 57 countries and > 1900 citations

• Customized external packages for electromagnetic and hadron
interactions (mostly Fortran)
– EGS4, FLUKA, UrQMD, GHEISHA, QGSJET, EPOS-LHC, DPMJET, SIBYLL

• IACT/atmo package (written in C, the “Bernloehr” package)
– Extension to Corsika to implement arrays of Cherenkov telescopes
– Use of external atmospheric models
– Propagation of the Cherenkov light in the atmosphere with refraction

4

Motivations to improve Corsika
performances

• MC simulations in CTA are the most CPU consuming task
– 70% of CPU spent in Corsika (shower development)
– 30% of CPU spent in telescope simulation

• Massive MC simulations run on the grid since 7 years to assess CTA
design

• During CTA operations MC simulations will be periodically run to
calculate the Instrument Response Functions

5

• 6000-8000 concurrent jobs
• > 125 M HS06 CPU hours

since Jan. 2018

Running jobs by site
since Jan. 2018 8000 jobs

See L. Arrabito’s talk Thursday on
CTADIRAC production setup.

Corsika “CTA production setup” profling
with Linux perf

• 90% of CPU in CERENK
subroutine and below
– Cherenkov photon production
– Part of Corsika ‘core’

• 50% of CPU in raybnd function
and below
– Propagation of Cherenkov

photon in the atmosphere
with refraction correction

– Part of IACT/atmo package

6

Linux perf + FlameGraph

• Compatible results obtained with different profling tools
– https://poormansprofler.org/ (based on gdb)
– valgrind

https://poormansprofiler.org/

Profling results

• Most of the CPU spent in mathematical functions and
atmospheric/refraction profle interpolation

– 35% exp (used for atmospheric profle interpolation)
– 35% sincos/asin
– 20% binary search for refraction tables interpolation

• Very frequently called, once per photon bunch
– About 160k photon bunches per shower (in our tests)

• Photon bunches are treated independently
– Possible vectorization?

➔ Choose to start optimizing the raybnd function 7

exp
binary search

• Zoom on raybnd (50% CPU)
expasin/sincos

Reference setup

• Dedicated server
– Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz running CentOS Linux 7.4 -

64 bits
• Running conditions

– Standard “CTA Production setup” - same as for profling
● compiled with standard options “-O2 -funroll-loops”

– Using keep-seeds option for random number generation to obtain
reproducible runs

– Run duration: about 8 minutes
• Simple performance measurements with ‘perf stat’: number of

cycles, number of instructions, elapsed time, etc.
• Checking result reproducibility

– Goal to obtain identical numerical results with respect to a reference version
– Using a dedicated program to print the coordinates of frst 10 photons of each bunch
➔ Need to develop better tools!

8

Optimization strategy

● Test automatic optimization by compiler
– 3072 options combinations… but no signifcant improvement (as expected)
– “-ffastmath” in particular does not bring any signifcant improvement and

slightly different numerical results

● Apply manual transformations
– At algorithmic level

● e.g. Testing different atmospheric interpolation schemes

– Code refactoring
– Exploiting the micro-architecture capabilities

● Apply vectorization to the raybnd function to treat multiple bunches at once
● Apply the vectorization at the mathematical function level (using dedicated

libraries)
● Want to obtain identical numerical results with respect to a reference version

– Reducing precision format whenever possible by means of automatic tools

9

Atmospheric profles and interpolation

10

• Generation and propagation of Cherenkov photons require a precise description of
the atmosphere: density, thickness, refraction index

• The atmosphere is built from 55 layers, and then interpolations are used to get
precise values at various altitudes

– Find the 2 closest points in the table and then compute a linear interpolation
• 35% of CPU time in raybnd spent in computing linear interpolation to evaluate

log(density), log(thickness), log(refdx) at various altitudes
– Implies calls to exp to obtain density, thickness, refraction index values

density profle log(density) profle

Current interpolation schemes

• Standard interpolation
– It makes use of binary search algorithm to fnd the the 2 closest

points in the look-up table
– Effcient algorithm can be run on any table, but it runs many

times
• Fast interpolation

– Enabled by default
– Use pre-calculated fne-grained tables with equidistant steps in

altitude
• No need anymore of binary search to fnd the 2 closest

points
– Implemented for atmospheric density and thickness tables but

not for refraction tables

11

Interpolation schemes

• Comparing the 2 schemes (standard and fast)
– Fast interpolation gives a speed-up of 1.15
– Small differences found looking at the Corsika output (photon

coordinates)
• x, y at micron level
• Arrival time at < 0.1 ps level
• No angular differences

• We’ve confrmed that interpolation algorithm has an impact on
performances

• Started the extension of fast interpolation to refraction tables
– No signifcant gain for the moment (though very preliminary)

• Other algorithms may be implemented in future (quadratic, cubic-
splines)
– Will allow to avoid exp calls
– Accuracy of interpolation results need to be carefully checked
– Carefully check the consistency of interpolations between the 3 tables

12

Manual optimization

• Refactoring the raybnd function
– Redundant calls to ‘binary search’ function for atmospheric

and refraction tables interpolation
– Simple refactoring to eliminate redundant calls

● Speed-up of 1.09 for identical numerical results
● Bonus : vectorization possibilities for exp calls

13

● Using a library vectorizing the most common
mathematical functions (exp, log, sin, cos, etc.)
● Announced speed-up of 280% for exp
● In raybnd, replaced 3 exp calls to 1 vector exp call

● Speed-up of 1.16 for identical numerical results
• Similar results obtained using a local custom “simple precision”

version of the library developed by G. Revy

Start implementing vectorization

• Testing different libraries for an easier vectorization of simple mathematical
operations on different architectures
– bSIMD

• https://developer.numscale.com/bsimd/documentation/v1.17.6.0/
– UME (Unifed Multicore Environment)

• https://gain-performance.com/ume/

– Both require C++ compiler...
• not applicable to Corsika core

– and are not compatible with our preferred library of vectorized
mathematical functions

• First attempt vectorizing ‘binary search’ function using UME
– Atmospheric tables are relatively small (e.g. 55 points)
– Replace binary search with brute force vectorized algorithm

• group table elements by 4 or 8 in vectors and perform comparisons with the
searched value for all elements in one call

➔not faster than binary search

14

https://developer.numscale.com/bsimd/documentation/v1.17.6.0/
https://gain-performance.com/ume/

Start implementing vectorization

15

• Start vectorizing raybnd function
– Had to modify the loop calling raybnd function to pass vector

arguments
● Unroll loop to process consecutively 4 photon bunches

– In raybnd: replace all calls to asin, sin, cos with their vector
counterparts (using a dedicated library)

● Speed-up: 1.11
• Combining this optimization with ‘code refactoring + vector_exp’

optimization (slide 13)
– Speed-up: 1.28

Conclusions

• Preliminary work started for Corsika optimization in
collaboration with computer scientists (LIRMM/UPVD)

• Focusing on photon propagation in the atmosphere
• 1.28 speed-up already obtained with simple code

transformation and limited application of vectorized
mathematical libraries

– with the constraint of getting identical results w.r.t.
reference version

• Next steps
– Extend the vectorization in raybnd to other calculations
– Start the work on precision reduction
– Develop automatic optimization tools

• Workshop at KIT on June 25th-26th about the
New Generation Corsika project - C++!
– https://indico.scc.kit.edu/event/426/
– Work also in the new framework on the mid-term

16

17

BACKUP

CTA

18

corsika packages

19

Corsika profling with Linux perf

• Profler tool for Linux based systems
• Used the sampling method (perf record/report), based on

the ‘cycles’ event and using the call graph option
• Running on a dedicated server

– x86_64
– Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz
– CentOS Linux release 7.4.1708 (Core)
– Compiled with: -O2 –funroll-loops

• Use ‘standard’ corsika input parameters (the same as in
production)

20

Compiler optimization tests

• Preparatory work
– Reorganise corsika/sim_telarray packaging (D. Parello)
– Allowing to easily test different compilation options and code

transformations
• Combine different compilation options

– Standard options:
• -O1, -O2, -O3

– Loop optimizations options:
• -ftree-loop-if-convert -ftree-loop-distribution -ftree-loop-

distribute-patterns -ftree-loop-im -ftree-vectorize -funroll-loops
-funroll-all-loops -foop-nest-optimize

– Arithmetics expression optimization (it may affect numerical results):
• -ffast-math

– Other options
• -mavx, -mavx2, -fto

21

First results of compiler optimizations tests

• 3072 option combinations tested
– No speed-up obtained beyond a factor 1.06

• Using ffast-math impacts numerical results (as expected)
– Found that small differences in numerical results may induce

different calls to random number generators leading to very
different fnal results

22

Interpolation in raybnd

• In raybnd (for non vertical paths)
– 3 fast interpolations (calls to thickx_, refdx_, rhofx_)

• Interpolation of atmospheric tables
• Evaluate thickness, refraction index and density at the emission altitude
• Also other calls directly from cerenk

– 3 standard interpolations with binary search (calls to rpol)
• Interpolation of refraction tables
• Evaluate horizontal displacement and time offset for a given density or

altitude
• Fast Interpolation not implemented for refraction tables

• Comparing the 2 schemes (standard and fast)
– Fast interpolation gives a speed-up of 1.15
– Small differences found looking at the corsika output (see next slide)
– Started the extension of fast interpolation to other tables but no signifcant

gain obtained for the moment

23

Interpolation schemes

• Small differences found in bunch coordinates (standard vs fast interpolation)
– x, y at micron level
– arrival time at < 0.1 ps level
– no angular differences

• Problem of the validation of new code versions
– Benchmark defnition
– Acceptable deviations from reference version

24

dx dy dt

	Slide 1
	Slide 2
	corsika for CTA
	The software
	Motivations to improve corsika performances
	Profiling results
	Profiling results
	Compiler optimization tests_clipboard0
	Optimization strategy
	Atmospheric profiles and interpolation
	Current interpolation schemes
	Interpolation schemes
	First manual optimization
	Start implementing vectorization
	Slide 15
	Conclusions
	Slide 17
	CTA
	corsika packages
	Corsika profiling with Linux perf
	Compiler optimization tests
	First results of compiler optimizations tests
	Interpolation in raybnd
	Interpolation schemes

