Software development for the NICA experiments: MpdRoot & BmnRoot

K. Gertsenberger, O. Rogachevsky
Veksler and Baldin Laboratory of High Energy Physics, JINR, Russia

on behalf of the MPD & BM@N collaboration
Nuclotron-based Ion Collider fACility

- Beams: from p, d^1 to Au^{79+}
- Luminosity: $10^{27} (Au^{79+}), 10^{32} (p)$ cm$^{-2}$s$^{-1}$
- Collision energy: $\sqrt{S_{NN_{AU}}} = 4 – 11$ GeV $E_{lab} = 1 – 6$ AGev

- Fixed target experiment: BM@N (2018)
- 2 interaction points: MPD (2020) & SPD
- Official site: nica.jinr.ru
Simulation and analysis steps of experiments

Event generator
- simulate physics process (quantum mechanics and probabilities)
 - Interaction of interest
 - Geometry of the system
 - Materials used
 - Particles of interest
 - Generation of test events of particles
 - Interactions of particles with matter and EM fields
 - Response to detectors
 - Records of energies and tracks
 - Analysis of the full simulation at whatever detail you like
 - Visualization of the detector system and tracks

Simulation
- simulate interaction with media and detector materials
 - Clustering
 - Hits reconstruction in subdetectors
 - Tracks reconstruction
 - Searching for track candidates in main tracker
 - Track propagation using Kalman filter
 - Matching with other detectors
 - Vertex finding
 - Particles identification

Digitization
- translate interactions with detectors into clusters of signals

Reconstruction
- as for experimental data
 - Phases of QCD matter at high baryon density
 - Hydrodynamics and hadronic observables
 - Femtoscopy, correlations and fluctuations
 - Local P and CP violation in hot QCD matter
 - Cumulative processes
 - Polarization effects and spin physics
 - Hypernuclei production in heavy ion collisions
 - and many others…

Analysis
- as for experimental data

should be covered by software of the experiments!

UrQMD
LAQGSM
Pythia…

Geant3
Geant4
Fluka…
The FairRoot package is an object-oriented simulation, reconstruction and data analysis framework based on ROOT. It includes core services for detector simulation and data analysis for HEP experiments. The framework delivers base classes which enable the users to easily construct experimental setup in a fast and convenient way. By using the Virtual Monte Carlo concept it is possible to perform the simulations using either Geant3 or Geant4 without changing the user code or the geometry description.

The basic idea of FairRoot is to provide a unified package with generic mechanisms to deal with most commonly used tasks in HEP. FairRoot allow physicists to:

- Focus on physics deliverables while reusing pre-tested software components.
- Do not submerge into low-level details, use pre-built and well-tested code for common tasks.
- Allows physicists to concentrate on detector performance details, avoiding purely software engineering issues like storage, retrieval, code organization etc.
FairRoot Universe

Start testing the VMC concept for CBM

2004

First Release of CbmRoot

MPD@NICA started with FairRoot

2006

Panda decided to join → oct.
FairRoot: base package for experiments

R3B joined

2010

EIC (Electron Ion Collider BNL)

GEM-TPC separated from PANDA branch

2011

SOFIA (Studies On Fission with Aladin)

ENSAR-ROOT Collection of modules used by structural nuclear physics exp.

2012

SHIP (Search for Hidden Particles)

SPD@NICA joined

2013

BM@N@NICA started with FairRoot

2014

2015

ALICE FAIR
MpdRoot and BmnRoot software

The software MpdRoot and BmnRoot are developed for the MPD and BM@N event simulation, reconstruction of experimental or simulated data and following physics analysis of heavy ion collisions registered by the detectors.

C++ classes, Linux OS support, based on ROOT and FairRoot

MpdRoot and BmnRoot are available in the GitLab@JINR https://git.jinr.ru/nica/
MpdRoot & BmnRoot design

- Use FairSoft external packages ROOT, XRootD, Pythia, PLUTO, HepMC, MillePede, Geant3/4, VGM, GSL, boost…

- Use FairRoot as a set of base classes and modules of needed by particle experiments

- Extended set of event generators for collisions:
 UrQMD, Hybrid UrQMD, vHLLE + UrQMD, QGSM/LAQGSM, HSD/pHSD, HADGEN, 3 Fluid Dynamics, PLUTO simple (for testing) - BOX, ION, PART

- Experiment-specific parts and geometry are developed for each detector independently

- Particle propagation by GEANT3 & GEANT4

- Advanced detector response functions, realistic tracking, PID were included

MPD and BM@N homepage: http://mpd.jinr.ru
MpdRoot & BmnRoot data processing

DAQ Storage
- raw data in MPD format
- raw_run.data

Event Generators
- UrQMD, QGSM, Pythia...

Simulation
- run_sim.C
- evetest.root

Digitizer
- run_raw.C
- digits.root

Reconstruction
- run_reco.C
- dst.root

Physics Analysis
- DST format

Generator
- generator.dat
MPD geometry & simulation

extended set of event generators for collisions

- Ultrarelativistic Quantum Molecular Dynamics (UrQMD)
- Quark Gluon String Model (QGSM, LAQGSM)
- Shield (on fly)
- Parton Hadron String Dynamics (HSD/PHSD)
- Pluto
- Hybrid UrQMD
- vHLLE+UrQMD
- 3 Fluid Dynamics model (Theseus)
1. Hit reconstruction in subdetectors.

2. Track reconstruction.
 • Searching for track-candidates in main tracker
 • Track propagation, e.g. using the Kalman Filter
 • Matching with other detectors (global tracking)

3. Vertex finding.

4. Particle identification.
The hit reconstruction algorithm contains the following main steps:

1) Searching for extended clusters in (Pad-Time) for each pad raw.

2) Searching for peaks in time-profile for each pad in the found extended cluster.

3) Combining the neighboring peaks into resulting hits.
MpdRoot. Tracking

TPC tracking efficiency

Efficiency of TOF matching

Transverse momentum resolution

Primary vertex resolution
MpdRoot. Particle identification

TPC
PID: Ionization loss (dE/dx)
BBF + Aleph parametrization
Separation:
e/h – 1.3..3 GeV/c
π/K – 0.1..0.6 GeV/c
K/p – 0.1..1.2 GeV/c

MPD PID (TOF):
- π/K separation up to p=1.7 GeV/c, above 2 GeV/c - extrapolating the fitted 3G parameters
- Protons up to 3 GeV/c
- dE/dx provide extra PID capability for electrons and low momentum hadrons

Parameterization:
3G + bkg. exponents
MPD physics with the MC generators

Direct flow slop changes

Net baryon rapidity curvature

Hypernuclei production

MPD performance for dileptons

P. N. Batyuk, V. D. Kekelidze, V. I. Kolesnikov, O. V. Rogachevsky, A. S. Sorin, V. V. Voronyuk. Feasibility study of heavy ion physics program at NICA // Physics of Particles and Nuclei 47:4, 2016, 540-566
BM@N in Nuclotron runs (2015 – 2018)

- Run – 51 (d,C)
 Feb. 22 – Mar. 15, 2015
- Run – 52 (d)
 June 29 – June 30, 2016
- Run – 53 (d, d↑)
- Run – 54 (C)
 Mar. 7 – Mar. 18, 2017
- Run – 55 (C,Ar,Kr)
 Technical / Physical
 Mar. 3 – Apr. 5, 2018

Beams: deutron (4 AGeV), C^{12} (3.5–4.5 AGeV), Ar (3.2 AGeV), Kr (2.4, 3.0 AGeV)
Targets: C, Cu, Pb, Al, Sn, C_2H_4, H_2 or empty
Trace beams, measure beam profile and time structure
Test integrated DAQ, T_0 and Trigger system
Detectors: MWPC, Si, GEM, ToF-400, DCH-1, DCH-2, ToF-700, ZDC, ECAL, LAND
Detect min bias beam-target interactions to reconstruct hyperons, identify charged particles and nucleus fragments
1. Hit reconstruction in subdetectors.

2. Track reconstruction.
 - Searching for track-candidates by Kalman Filter in the GEM
 - Track propagation in the GEM using Kalman Filter
 - Matching of TOF-hits & DCH-hits with the GEM-tracks (global tracking)

3. Vertex finding.
There are realistic hit finder in GEMs

For the GEM stations procedure of the fake hits production is implemented
In BmnRoot there are two independent branches of tracking in GEMs:

1) The first tracking is based on the L1-tracking (CBM@GSI). Track-candidates are searched by the cellular automatons.

2) The second tracking is based on 3D conformal mapping. Track-candidates are searched by the developed special coordinate transformation.
BmnRoot. Physics at BM@N

Au+Au, 4.5 AGeV, UrQMD, 900k central

\[\Lambda^0 \rightarrow p \pi^- \]

- Entries / 2 MeV/c^2
- Invariant mass: \(\Lambda \rightarrow p + \pi^- \)
- S/B = 3.9
- S/\sqrt{S+B} = 83.5
- Eff. = 8.9%
- Peak 3221.9
- Mean 1.115
- Sigma 0.0023

Au+Au, 4.5 AGeV, 2M central events

\[\Xi^- \rightarrow \Lambda + \pi^- \]

- Entries / 2 MeV/c^2
- Invariant mass: \(\Xi^- \rightarrow \Lambda + \pi^- \)
- S/B = 3.6
- S/\sqrt{S+B} = 14.0
- Eff. = 0.8%
- Peak 77.53
- Mean 1.321
- Sigma 0.0027

Hypernuclei production

\[\Lambda + \pi^- \rightarrow \Xi^- \]

- Invariant mass: \(\Xi^- \rightarrow \Lambda + \pi^- \)
- S/B = 3.6
- S/\sqrt{S+B} = 14.0
- Eff. = 0.8%
- Peak 77.53
- Mean 1.321
- Sigma 0.0027

\[\Lambda + \pi^- \rightarrow \Xi^- \]

- Invariant mass: \(\Xi^- \rightarrow \Lambda + \pi^- \)
- S/B = 3.6
- S/\sqrt{S+B} = 14.0
- Eff. = 0.8%
- Peak 77.53
- Mean 1.321
- Sigma 0.0027
The Unified Database for offline processing

- **BmnRoot**
 - detector simulation
 - raw data processing
 - event reconstruction
 - physics analysis

- **C++ database interface w/o SQL**
 - (connect, SQL I/O)

- **Unified Database**
 - central data storage for offline data analysis
 - unified access and data management
 - correct multi-user data processing
 - ensuring the actuality, data consistency and integrity
 - excluding the multiple duplication and use of outdated data
 - automatic backup

- **Web-interface**
 - reading and changing data

- **Tango Interface**
 - Tango
 - configuration calibration
 - parameter and algorithm data

- **Tango**
 - Slow Control System

- **PostgreSQL**

- **Users**
Event Display for the NICA experiments

Event Display for reconstructed data:

hits, tracks, calorimeter towers

Event Display for simulated event data:

MC points, tracks, calorimeter towers

based on EVE package
Online Event Display

Online Event Display
(GEM hits and tracks in run #1220)

C-C $E_{lab} = 3.5$ GeV

Unified Database

Digitizer

raw *.data

BM@N geometry for a given run

ATLAS TDAQ EMS

fast clustering

fast tracking

digits
digits

hits

tracks

DAQ storage
Parallel event processing in MpdRoot&BmnRoot

PROOF (Parallel ROOT Facility) is a part of the ROOT software
Parallel NICA event data processing in ROOT macros on the parallel architectures: user multicore machines, heterogeneous distributed clusters and GRID system

Scheduling system (MPD-Scheduler) for task distribution to parallelize NICA data processing on multicore machines and cluster nodes
Supports SLURM, SGE and Torque system
Can use data of the Unified Database
Jobs are described and passed as XML file
Software Tests

Nightly Tests
(CDASH + QA Histograms)

User Tests
by request in CDASH or GIT

GIT CI Tests on merge requests
check compilation and main macros
→ stable dev and pro branches

In case of compilation or macro errors
e-mail is sent to software developers
The software frameworks for the NICA experiments provide to users all necessary tools to simulate any kind of detectors and study their properties.

The user can describe geometry of the detector in details and visualize the geometry and detector response for the considered particles by event display.

The methods of MPD and BM@N event reconstruction were implemented.

Users are able to make the proposed physics analysis by the available MC generators for the NICA project to study feasibilities with these experiments.

Many software systems have been developed: BM@N Unified Database, PROOF parallelization and MPD-Scheduler, Cluster Monitoring and Software Test System, Event Display and Online Histogramming, e-Logbook and official Web-site…

The big work has been done, but a lot of packages should be added or improved for the experimental data taking and data processing in distributed systems: online clustering and fast tracking, online alignment and calibrations, physics analyses methods, distributed and cloud computing for the NICA experiments…
Thank you for your attention!

More information: nica.jinr.ru
 mpd.jinr.ru

Email: gertsen@jinr.ru

Today, T3 - Hall 7, 15:00. prof. Vladimir V. Korenkov - The JINR distributed computing environment