The Event Buffer Management for MT-SNiPER

Jiaheng Zou, Tao Lin, Weidong Li, Xingtao Huang, Ziyan Deng, Guofu Cao, Zhengyun You

CHEP 2018, Sofia Jul. 12, 2018
Outline

- SNiPER Software Framework
- Global Stream and Buffer
- Performance Test
- Summary
The SNiPER Software Framework

SNiPER: a general purpose offline software framework

- Specific to non-collider HEP experiments
- Lightweight and simple to use
- Open source (LGPL 3.0)

Implementation

- Hybrid of C++ and Python
- Thread safe

Current Status

- Used by many experiments (JUNO, LHAASO, CSNS, nEXO)
- More potential users
Event Memory for JUNO

Anti-neutrino Inverse Beta Decay

- In Central Detector, e^+ and n are triggered separately

$$\bar{\nu}_e + p \rightarrow e^+ + n$$

$$e^+ + e^- \rightarrow 2\gamma$$

$$n + Gd \rightarrow Gd^* \rightarrow Gd + \gamma_s \ (8\text{MeV})$$

Events Time Correlation Analysis

- Event buffer with a time window
MT-SNiPER Enhancement

- **Event Level Multithreaded Parallel Processing**
 - Based on Intel TBB (Threading Building Blocks)
 - Events are dispatched to threads and processed concurrently

- **Key Features**
 - Non-invasive to the SNiPER kernel modules
 - Parallel features are implemented as a wrapper of the kernel
 - We can switch between serial and parallel mode smoothly
 - Quite straightforward and understandable with multiple instances of SNiPER Task
 - (Almost) transparent to users and algorithm developers
 - Minimize the migration costs from serial to parallel computing
SNiPER Task

- Task controls the event loop procedure of the algorithms sequence
- There can be **multiple Task instances** in a single job
 - Each Task instance can be configured with different contents

A Task manages
- a sequence of Algorithms
- a group of Services
- a Data Buffer for events in memory

An Algorithm represents
- a unit for event data calculation

A Service represents
- a unit for common functionality
Code Reusability in MT-SNiPER

- What can be reused from serial version
 - I/O services
 - Algorithms and other services in a Task

- What’s new with MT-SNiPER
 - Global I/O Stream and Global Buffer
 - Specialized I/O services to access the Global Buffer in Worker Task(s)
 - Configure multiple Task instances for I/O and Worker of MT-SNiPER
Disk I/O are typical critical resources in MT computing

Benefits of the Global I/O Stream
- Global I/O Tasks are decoupled from Worker Tasks
- Global I/O Tasks is lock free to access the Disk

Benefits of the Global Buffer
- Thin lock between Worker Tasks
 - Memory accessing is much faster than disk
 - Only event references are sent to Workers
- Keep events in right order for writing out (FIFO)
Global Buffer Management

- A ring with configurable capacity and cordon
 - Each element has a status code (valid/being processed/processed)

- Operations (in different threads)
 - Filling by Input Task
 - Fill an event and notify a waiting Worker
 - Wait for a signal when it’s full
 - Access by Worker Task
 - Get the next event with a thin lock
 - Notify the Output Task after processing
 - Wait for a signal when empty
 - Popup by Output Task
 - Popup and write the first event if it has been processed
 - Notify the Input Task when the events in buffer is less than cordon
 - Wait for a signal when the first event is not processed
Local Buffer in Worker Task

- Each Worker Task has its own local buffer
 - The event(s) being processed by this Worker

- Keep one event reference of Global Buffer
 - The Global Buffer prototype performs pretty well
 - This is enough in most cases

- Keep more events according to event timestamps
 - Necessary when we need events’ time correlation analysis
 - There can be overlaps of Workers’ local buffers
 - The events dispatch is a little different, which is being developing
 - A sub-sequence of events are sent to Worker in each accessing
The Global Buffer and Local Buffer

Global Buffer – bind to I/O streams, cache all events in memory, keep events in right order for output

Local Buffer – same as the serial version of DataBuffer
Performance Test

- Test environment and test cases
 - 32 Cores (8 Core Intel(R) Xeon(R) CPU E5 * 4)
 - A dummy algorithm ~ Avg. 100 executions / second

- The speedup ratio is almost linear when < 20 threads
- The resource overhead is very small
Summary

- MT-SNiPER is a non-invasive wrapper for SNiPER, which supports event level multithreaded computing
- Global Stream and Global Buffer is implemented for the data management of MT-SNiPER
 - The concept is simple with SNiPER’s multiple Task instances
 - Thin locks and high performance
 - To be improved in case of events’ time correlation analyses

Thanks!