
Here is a complete nix expression which allows the base application of the LHCb software stack to be built.
1 { stdenv, fetchurl, boost, cmake, python, ninja, root, gaudi
2 , clhep, xercesc, cppunit, libxml2, openssl, relax, gsl, eigen, aida, graphviz
3 , qt5, mysql57, sqlite, hepmc, cool, coral, libgit2, pkgconfig, vdt, cpp-gsl
4 , oracle-instant-client, xrootd
5 # Data packages
6 , det-sqldddb, fieldmap, gen-decfiles, paramfiles, prconfig, raweventformat
7 , tck-hlttck, tck-l0tck }:
8
9 stdenv.mkDerivation rec {
10 name = "LHCb-${version}";
11 version = "v44r0";
12
13 src = fetchurl {
14 url = "https://gitlab.cern.ch/lhcb/LHCb/repository/${version}/archive.tar.gz";
15 sha256 = "0h5wph3p3ha7h34byyamd1dlvb27hs5xpjbfff363y8r43dsk4pa";
16 };
17
18 buildInputs = [
19 cmake ninja boost gaudi clhep xercesc cppunit libxml2 openssl relax eigen
20 gsl aida graphviz qt5.qtbase mysql57 sqlite hepmc cool coral libgit2
21 pkgconfig vdt cpp-gsl oracle-instant-client xrootd root
22 (python.withPackages (ps: with ps; [xenv pyqt5 lxml]))
23 det-sqldddb fieldmap gen-decfiles paramfiles prconfig
24 raweventformat tck-hlttck tck-l0tck
25];
26
27 propagatedBuildInputs = [python];
28
29 cmakeFlags = [
30 "-GNinja"
31 "-DMYSQL_INCLUDE_DIR=${mysql57}/include/"
32 "-DGRAPHVIZ_INCLUDE_DIR=${graphviz}/include/"
33 "-DCOOL_PYTHON_PATH=${cool}/python"
34 "-DCORAL_PYTHON_PATH=${coral}/python"
35];
36
37 checkPhase = ''
38 ninja test
39 '';
40 doCheck = true;
41
42 postInstall = ''
43 for fn in $out/lib/lib*.so; do \
44 ${gaudi}/bin/listcomponents.exe $fn >> "''${fn%.so}.components"
45 done
46 '';
47
48 enableParallelBuilding = true;
49
50 meta = {
51 homepage = http://lhcbdoc.web.cern.ch/lhcbdoc/lhcb/;
52 description = "General purpose classes used throughout the LHCb software.";
53 platforms = stdenv.lib.platforms.unix;
54 };
55 }

What is Nix?
Nix1 is a “purely functional package manager”

- Works with Linux and other unix systems (including macOS)
- Supports i686, x86_64 and arm64 (experimental) including cross-compilation
- Everything is kept in the store directory (default: /nix/store)
- Designed to support many conflicting software versions/configurations
- Preexisting community with O(14,000) package definitions

Nix has a very strong focus on:
Purity: All dependencies should be explicitly defined and build
tools should not look in locations outside of Nix.
Reproducibility: Repeated builds should result in the same
output, ideally bit-for-bit, even on other hosts.
1 https://nixos.org/nix/

Packages are defined as functions where the dependencies of
the package are the arguments to the function. Default values
for arguments are taken from all packages.nix however they ‑packages.nix however they
can easily overridden if required.

Software packaging and distribution for LHCb using Nix
Chris Burr 1, Ben Couturier 2 and Marco Clemencic 2 on behalf of the LHCb collaboration

1 The University of Manchester 2 CERN

Requirements for HEP packaging
Production
Software must be stable for long periods (much longer than a LTS OS)
Need to reliably reprocess data for 10+ years, even reproducing the bugs!
Some dependencies will need to be updated such as XRootD

- Ideally made runtime dependencies with stable interfaces
- Reproducible builds help mitigate unexpected problems

Physics analysts
Want to use the latest software to get the best results
But once ready environment must remain perfectly stable for minor fixes
Are primarily physicists and shouldn’t be expected to build everything
Long-term analysis preservation
Performing an analyses often spans multiple years
Need to combine results with old analyses or update them with new data

Defining packages in Nix

Defined using a custom functional language
- Knowledge of this is not required for most users

Packages are kept in a directory containing a hash of:
- package source via a SHA256 hash
- build configuration
- each dependency’s hashes all the way to the libc

The hash uniqueness ensures:
- Many versions/configurations without conflicts
- No ambiguity: same install location iff same build

Example: Build both ROOT and XRootD with different
Python and gcc versions results in four different → results in four different
install directories for each package:

Main upstream repository of packages is nixpkgs1:
- Includes support for most build systems
- Many helper functions to minimise boilerplate
- Various “channels” for stable and unstable releases

Steps to add a new package:
- Create a file defining the source and dependencies
- Add one line to all-packages.nix

Default build script splits the build into phases:
unpackPhase
patchPhase
configurePhase
 - Default: Run ./configure.sh if present
 - Dependencies can automatically override (i.e. cmake)
buildPhase
checkPhase
installPhase
installCheckPhase
fixupPhase
 - Nix specific post-processing
 - Stripping or split debug information
 - Patching interpreter paths
 - Remove runtime dependencies by simplifying the RPATH
 - Automatically detect the remaining runtime dependencies
 - Mostly achieved using patchelf (also a Nix project)

Build script is flexible, phases can be easily overridden

Automatic tweaks for languages and build systems

Total flexibility without any boilerplate
1 https://nixos.org/nixpkgs/

Full recipe for building the base “LHCb” software application

Dependencies

Make a derivation with a set of name/value pairs, known as
attributes, containing package details. General attributes

The source to build the package which can be downloaded via
https, ftp, git, svn, cvs and other. The hash is as a dependency
of the build to ensure reproduciblity. Source

Dependencies which must be present at build time. Each
package can modify the build environment to do tasks like
setting environment variables.

Runtime dependencies can be automatically deduced by
searching for the presence each dependency’s hash. Additional
runtime dependencies can be specified using the attribute
propagatedBuildInputs.

Build time dependencies

Runtime dependencies

The meta attribute contains metadata about the build without
interacting with the build environment. This often contains a
description of the package, licensing information and a list of
maintainers.

Dependencies can modify the build procedure without requiring
the default build script to support multiple build systems. Flags
which are always required, such as setting install prefixes and
RPATH are included by default, with custom attributes used
for package specific dependencies. Custom attributes

Package metadata

Here build tests are enabled and the phase is overridden to run
ninja test instead of make check. Modify phases

Additional phases can be added at any point to allow arbitrary
builds to be defined without explicitly repeating steps that are
required for every build. Additional phases

Defining environments

Environments can also be defined using Nix
- Get the build environment for a package
- Make a meta package of symlinks (buildEnv)

Packages can easily define setup hooks
- Arbitrary shell script that is sourced automatically
- Can be used to easily add environment variables

See the HSF packaging group’s
“testdrive” for an example of using
buildEnv to define a deep stack.

Requirements for HEP packaging

Production
Software must be stable for long periods (much longer than a LTS OS)
Need to reliably reprocess data for 10+ years, even reproducing the bugs!
Some dependencies will need to be updated such as XRootD

- Ideally made runtime dependencies with stable interfaces
- Reproducible builds help mitigate unexpected problems

Physics analysts
Want to use the latest and greatest software features to get the best results
But once ready environment must remain perfectly stable for minor fixes
Long-term analysis preservation
A single analysis often spans multiple years, requiring a stable stack during this time
Often want to combine new results with old analyses or update them with new data

Providing binary caches with Hydra
Building deep stacks locally is time consuming and issue prone

Mitigate this with binary caches
- Static web servers serving signed tarballs
- Request file using the package hash

Hydra1 is a continuous build system
- Deep integration with Nix
- Builds periodically, after every commit or for releases
- Scalable from a single machine to a entire cluster (via SSH)
- Can serve binaries directly or use plugins to export (e.g. S3)
- Mitigations for common issues (bad workers, network, ...)
- Can also provide continuous integration
- Also used by some GNU projects

1 https://nixos.org/hydra

Testing Nix within LHCb
LHCb software stack

- Approximately 20 separate packages
- Distributed as binary releases on CVMFS

Changing the store directory
- Changed to /cvmfs/lhcbdev.cern.ch/nix/
- Would be an essential feature for LHCb

Custom Hydra instance dramatically improved the Nix experience
- Changing the store directory requires a full rebuild (slow!)
- Host on CERN OpenStack, back by Postgres DBoD instance
- Connect via SSH to docker containers on faster build machines
- Managing and scaling a “cluster” of build machines was easy

Forking nixpkgs
- Makes deep customisation easier
- Successfully auto-rebasing the fork to track upstream changes
- Hydra monitors for and automatically builds changed packages
- Will setup a system to push relevant changes upstream

Building LHCb reconstruction software (Brunel)
- Depends on 4 other LHCb packages
- Many external dependencies, most were already available

- Some minor tweaks were needed
- Oracle Instant Client:

- Licensing issues prevent Nix from downloading
- Had to manually import source
- Enable builds of non-free software

- Missing derivations: CatBoost, COOL, CORAL, CLHEP, frontier,
 pacparser, RELAX, REFLEX, VDT, XRootD

- Most were trivial to define
- CatBoost:

- Closed source build system that depends on glibc
- Once identified easy to fix using patchelf

Summary
The LHCb stack can be built within Nix!
HSF packaging WG is considering Nix https://cern.ch/go/gf6G

Benefits:
✔ Environments are exactly defined and reproducible
✔ Independent from the host OS
✔ Hydra could replace Jenkins for CI/CD needs

Disadvantages:
✘ No relocatability but…

- Store directory can be changed to be on CVMFS
- Could use containers & user namespaces instead?

https://nixos.org/nix/
https://nixos.org/nixpkgs/
https://nixos.org/hydra
https://cern.ch/go/gf6G
https://github.com/HSF/packaging/tree/master/testdrive/nix/c7-nix

	Slide 1

