Software pacRaging and distribution for LHCb using Nix

Chris Burr?, Ben Couturier? and Marco Clemencic? on behalf of the LHCb collaboration
'The University of Manchester >CERN

Requirements for HEP packaging What is Nix?

Production Nix! is a “purely functional package manager”
Software must be stable for long periods (much longer than a LTS OS) - Works with Linux and other unix systems (including macQOS)
Need to reliably reprocess data for 10+ years, even reproducing the bugs! - Supports 1686, x86_64 and armé4 (experimental) including cross-compilation
Some dependencies will need to be updated such as XRootD - Everything is kept in the store directory (default: /nix/store)
- Ideally made runtime dependencies with stable interfaces - Designed to support many conflicting software versions/configurations
- Reproducible builds help mitigate unexpected problems - Preexisting community with O(14,000) package definitions
Physics analysts Nix has a very strong focus on: L
Want to use the latest and greatest software features to get the best results Purity: All dependencies should be explicitly defined and build
But once ready environment must remain perfectly stable for minor fixes tools should not look in locations outside of Nix.
Long-term analysis preservation Reproducibility: Repeated builds should result in the same
A single analysis often spans multiple years, requiring a stable stack during this time output, ideally bit-for-bit, even on other hosts.
Often want to combine new results with old analyses or update them with new data sl s eneding
Defining packages in Nix Full recipe for building the base “LHCb” software application
Defined using a custom functional language Here is a complete nix expression which allows the base application of the LHCb software stack to be built.
- Knowledge of this is not required for most users { stdenv, fetchurl, boost, cmake, python, ninja, root, gaudi A
, clhep, xercesc, cppunit, libxml2, openssl, relax, gsl, eigen, aida, graphviz Packages are defined as functions where the dependencies of
Packages are kept in a directory containing a_hash of: Eiiéll“fiﬁiilgiiﬁiié,hiif,‘f,édml’ coral, libgit2, pkgcontig, vdt, cpp-gsl g the package are the arguments to the function?. Default values
' # Data packages | | | for arguments are taken from all-packages.nix however the
_ pachage source via a SHA256 hash fii:igifgi?,tiifiiizi,}?en—decflles, paramfiles, prconfig, raweventformat can easily overridden if required.

- build configuration
- each dependency’s hashes all the way to the libc

stdenv.mkDerivation rec { Make a derivation with a set of name/value pairs, known as
name = "LHCb-${version}";
version = "v44r0"; attributes, containing packRage details. General attributes

The hash uniqueness ensures: src = fetchurl { The source to build the package which can be downloaded via
. url = "https://gitlab.cern.ch/lhcb/LHCb/repository/${version}/archive.tar.gz"; : .
- Many VerSIonS/ConﬂguratlonS without conflicts sha256 = "0h5wph3p3ha7h34byyamdldlvb27hs5xpjbff£363y8rd3dskdpa’; hgpﬁ’ fl;cpjlglt’ svn, cvs and theFBIT.he hash is as a dependenc
Vo : S : ; of the build to ensure reproduciblity.
- No ambiguity: same install location iff same build i P Y
build]I{npu’;s_=£ o et e - Dependencies which must be present at build time. Each
cmake ninja boost gaudi clhep xXercesc cppuni ibxml2 openssl relax eigen . .) .
Example: Build both ROOT and XRootD with different gsl aida graphviz qt5.qtbase mysql57 sqlite hepmc cool coral libgit2 package can modify the build environment to do tasks like
. . . pkgconfig vdt cpp-gsl oracle-instant-client xrootd root i i i . . .
Python and gcc versions — results in four different (python.withPackages (ps: with ps; [xenv pyqt5 lxml])) e setting environment variables. Build time dependencies
. . . . det-sgldddb fieldmap gen-decfiles paramfiles prconfig) . .
install directories for each package: raveventformat tek-hlttck tok-10tck Runtime dependencies can be automatically deduced by
K = searching for the presence each dependency’s hash. Additional
propagatedBuildInputs = [python]; } runtime depender)cies can be specified using the attribute
Python 2.7 cmakerlags - | N propagatedBuildInputs. Runtime dependencies
"_GNinja"
" _DMYSQL INCLUDE DIR=${mysql57}/include/" Dependencies can modify the build procedure without requiring
33Iﬁﬁﬁ?ﬁﬁiiﬁéﬂ%ﬁ?ﬁ:@iii i?fggggik/ G/ e the default build script to support multiple build systems. Flags
Python 3.6 "_DCORAL PYTHON PATH=${coral}/python" which are always required, such as setting install prefixes and
i / RPATH are included by default, with custom attributes used

ninja test

Main upstream repository of packages is nixpkgs®:
- Includes support for most build systems
- Many helper functions to minimise boilerplate

<';1(')(;:heck - : Here build tests are enabled and the phase is overridden to run
ninja testinstead of make check. -
postInstall = "' J MOdlfy phases

for fn in Sout/lib/lib*.so; do \

checkPhase = ' } for package specific dependencies. Custom attributes

Various “ch Is” for stabl d unstable rel ${gaudi}/bin/listcomponents.exe $fn >> "''${fn%.so}.components" Additional phases can be added at any point to allow arbitrary
- Various “CHanneis 1of stable ald UNStable Teledses | done builds to be defined without explicitly repeating steps that are
' required for every build. Additional phases
Steps to add a new pachage: enableParallelBuilding =

- Create 3 file deﬂning the source and dependencies GEize = 4 B / / / The meta a’ttribhuteh cobntTCi'ns metadata aborl]Jt thfe build without
: : homepage: = http://thcbdoc.web.cern. ch/thecbdoc/Iheby/; interacting with the build environment. This often contains a

- Add onelinetoall- paCkageS .N1X description = "General purpose classes used throughout the LHCb software."; L & _
platforms = stdenv.lib.platforms.unix; description of the pacRage, licensing information and a list of

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

} }i maintainers. Package metadata

Default build script splits the build into phases:
unpackPhase
patchPhase
configurePhase
- Default: Run . /configure.shif present

Testing Nix within LHCb Providing binary caches with Hydra

_ Dependendes e auemetiell) svamiie e ezl LHCb software stack Building deep stacks locally is time consuming and issue prone
buildPhase - Approximately 20 separate packages H(|

checkPhase - Distributed as binary releases on CVMFS . Mitigate this with binary caches

installPhase - Static web servers serving signed tarballs
installCheckPhase i i - Request file using the package hash

fixupPhase Changing the store directory q g g

- Nix specific post-processing - Changed to /cvmfs/lhcbdev.cern.ch/nix/ Hydra! is a continuous build system

- Stripping or split debug information - Would be an essential feature for LHCb Deep integration with Nix
- Patching int ter path : T :
SRR R e , , , , , - Builds periodically, after every commit or for releases
- Remove runtime dependencies by simplifying the RPATH Custom Hydra instance dramatically improved the Nix experience - Scalable from a single machine o a entire cluster (via SSH)
- Automatically detect the remaining runtime dependencies - Changing the store directory requires a full rebuild (slow!) g

- Can serve binaries directly or use plugins to export (e.g. S3)
- Mitigations for common issues (bad workers, network, ...)
- Can also provide continuous integration

- Also used by some GNU projects

~Mostly achieved using patchelf (also a Nix project) - Host on CERN OpenStack, back by Postgres DBoD instance

- Connect via SSH to docker containers on faster build machines

Build script is flexible, phases can be easily overridden . , . . , .
- Managing and scaling a “cluster” of build machines was easy

Automatic tweaks for languages and build systems | https:/Inixos.orglhydra

Forking nixpkgs

Total flexibility without any boilerplate - Makes deep customisation easier
! httos:/Inixos.orelnixokes| - Successfully auto-rebasing the fork to track upstream changes Summal’y
| - - Hydra monitors for and automatically builds changed packages
- Will setup a system to push relevant changes upstream The LHCb stack can be built within Nix!
Defining environments HSF packaging WG is considering Nix https:/lcern.ch/golgf6G
Building LHCb reconstruction software (Brunel) Benefits:
Environments can also be defined using Nix - Depends on 4 other LHCb packages v Environments are exactly defined and reproducible
- Get the build environment for a package - Many external dependencies, most were already available v Independent from the host OS
- Make a meta package of symlinks (buildEnv) - Some minor tweaks were needed v/ Hydra could replace Jenkins for CI/CD needs
- Oracle Instant Client: .
Packages can easily define setup hooks - Licensing issues prevent Nix from downloading Disadvantages: -
- Arbitrary shell script that is sourced automatically - Had to manually import source x5 e relocgtablllty —
- Can be used to easily add environment variables - Enable builds of non-free software - Store directory can be changed to be on CVMFS
- Missing derivations: CatBoost, COOL, CORAL, CLHEP, frontier, - Could use containers & user namespaces instead?

pacparser, RELAX, REFLEX, VDT, XRootD

See the HSF packaging group’s - Most were trivial to define
“testdrive” for an example of using - CatBoost: MANCHESTER
buildEnv to define a deep stack. - Closed source build system that depends on glibc 1824

- Once identified easy to fix using patchelf

The University of Manchester

https://nixos.org/nix/
https://nixos.org/nixpkgs/
https://nixos.org/hydra
https://cern.ch/go/gf6G
https://github.com/HSF/packaging/tree/master/testdrive/nix/c7-nix

	Slide 1

